Journal of Statistical Physics

, Volume 157, Issue 4–5, pp 979–989 | Cite as

Renormalization of Competing Interactions and Superconductivity on Small Scales



The interaction-induced orbital magnetic response of a nanoscale ring is evaluated for a diffusive system which is a superconductor in the bulk. The interplay of the renormalized Coulomb and Fröhlich interactions is crucial. The magnetic susceptibility which results from the fluctuations of the uniform superconducting order parameter is diamagnetic (paramagnetic) when the renormalized combined interaction is attractive (repulsive). Above the transition temperature of the bulk the total magnetic susceptibility has contributions from many wave-vector- and (Matsubara) frequency-dependent order parameter fluctuations. Each of these contributions results from a different renormalization of the relevant coupling energy, when one integrates out the fermionic degrees of freedom. The total diamagnetic response of the large superconductor may become paramagnetic when the system’s size decreases.


Superconductivity Renormalization Persistent current Size-dependence 



We thank Yuval Oreg and Alexander Finkelstein for important discussions, and Hamutal Bary-Soroker for participation in Ref. [10], which led to the present work. This work was supported by the Israeli Science Foundation (ISF) and the US-Israel Binational Science Foundation (BSF).


  1. 1.
    Wilson, K.G., Kogut, J.: The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75 (1974)CrossRefADSGoogle Scholar
  2. 2.
    Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)CrossRefADSGoogle Scholar
  3. 3.
    Anderson, P.W.: A poor man’s derivation of scaling laws for the Kondo problem. J. Phys. C 3, 2436 (1970)CrossRefADSGoogle Scholar
  4. 4.
    Froehlich, J.: Scaling and Self-Similarity in Physics (Renormalization in Statistical Mechanics and Dynamics), Progress in Physics 7. Birkhaeuser, Basel (1983)CrossRefGoogle Scholar
  5. 5.
    Benfatto, G., Gallavotti, G.: Renormalization Group. Princeton University Press, Princeton, NJ (1995)MATHGoogle Scholar
  6. 6.
    Gunther, L., Imry, Y.: Flux quantization without off-diagonal-long-range-order in a thin hollow cylinder. Solid State Commun. 7, 1391 (1969)CrossRefADSGoogle Scholar
  7. 7.
    I. O. Kulik, Magnetic flux quantization in the normal State, Zh. Exsp. Teor. Fiz. 58, 2171 (1970) [Sov. Phys. JETP 31, 1172 (1970)] and references thereinGoogle Scholar
  8. 8.
    Aslamazov, L.G., Larkin, A.I.: Fluctuation-induced magnetic susceptibility of superconductors and normal metals. Zh. Eksp. Teor. Fiz. 67, 647 (1974)Google Scholar
  9. 9.
    Büttiker, M., Imry, Y., Landauer, R.: Josephson behavior in small normal-metal rings. Phys. Lett. 96A, 365 (1983)CrossRefADSGoogle Scholar
  10. 10.
    Bary-Soroker, H., Entin-Wohlman, O., Imry, Y., Aharony, A.: Scale-dependent competing interactions: sign reversal of the average persistent current. Phys. Rev. Lett. 110, 056801 (2013)CrossRefADSGoogle Scholar
  11. 11.
    Ambegaokar, V., Eckern, U.: Coherence and persistent current in mesoscopic rings. Phys. Rev. Lett. 65, 381 (1990)CrossRefADSGoogle Scholar
  12. 12.
    Ambegaokar, V., Eckern, U.: Nonlinear diamagnetic response in mesoscopic rings of superconductors above \(T_c\). Europhys. Lett. 13, 733 (1990)CrossRefADSGoogle Scholar
  13. 13.
    Morel, P., Anderson, P.W.: Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev. 125, 1263 (1962)CrossRefADSGoogle Scholar
  14. 14.
    Bogoliubov, N.N., Tolmachev, V.V., Shirkov, D.V.: A New Method in the Theory of Superconductivity. Consultants Bureau Inc, New York (1959)Google Scholar
  15. 15.
    de Gennes, P.G.: Superconductivity of Metals and Alloys. Addison-Wesley Publishing Co., Reading, MA (1989)Google Scholar
  16. 16.
    Larkin, A.I., Varlamov, A.: Theory of Fluctuations in Superconductors. Oxford University Press, New York (2009)Google Scholar
  17. 17.
    Imry, Y.: Introduction to Mesoscopic Physics, 2nd edn. Oxford University Press, Oxford (2002)Google Scholar
  18. 18.
    Bary-Soroker, H., Entin-Wohlman, O., Imry, Y.: Effect of pair-breaking on mesoscopic persistent currents well above the superconducting transition temperature. Phys. Rev. Lett. 101, 057001 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Bary-Soroker, H., Entin-Wohlman, O., Imry, Y.: Pair-breaking effect on meso-scopic persistent currents. Phys. Rev. B 80, 024509 (2009). references thereinCrossRefADSGoogle Scholar
  20. 20.
    Altland, A., Simons, B.: Condensed Matter Field Theory. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  21. 21.
    Aharony, A., Entin-Wohlman, O., Bary-Soroker, H., Imry, Y.: Limitations on the Ginzburg criterion for dirty superconductors. Lith. J. Phys. 52, 81 (2012)CrossRefGoogle Scholar
  22. 22.
    Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of Quantum Field Theory in Statistical Physics. Prentice-Hall, Englewood Cliffs, NJ (1963)MATHGoogle Scholar
  23. 23.
    Reich, S., Leitus, G., Feldman, Y.: Observation of magnetism in Au thin films. Appl. Phys. Lett. 88, 222502 (2006). and references thereinCrossRefADSGoogle Scholar
  24. 24.
    Yamamoto, Y., Miura, T., Suzuki, M., Kawamura, N., Miyagawa, H., Nakamura, T., Kobayashi, K., Teranishi, T., Hori, H.: Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 93, 116801 (2004)CrossRefADSGoogle Scholar
  25. 25.
    Negishi, Y., Tsunoyama, H., Suzuki, M., Kawamura, N., Matsushita, M.M., Maruyama, K., Sugawara, T., Yokoyama, T., Tsukuda, T.: X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. J. Am. Chem. Soc. 128, 12034 (2006)CrossRefGoogle Scholar
  26. 26.
    Bartolome, J., Bartolome, F., Garcia, L.M., Figueroa, A.I., Repolle, A., Martinez, M.J., Luis, F., Magen, C., Selenska-Pobell, S., Pobell, F., et al.: Strong paramagnetism of gold nanoparticles deposited on a Sulfolobus acidocaldarius S layer. Phys. Rev. Lett. 109, 247203 (2012)CrossRefADSGoogle Scholar
  27. 27.
    Crespo, P., Litran, R., Rojas, T.C., Multigner, M., de la Fuente, J.M., Sanchez-Lopez, J.C., Garcia, M.A., Hernando, A., Penades, S., Fernandez, A.: Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys. Rev. Lett. 93, 087204 (2004)CrossRefADSGoogle Scholar
  28. 28.
    Garitaonandia, J.S., Insausti, M., Goikolea, E., Suzuki, M., Cashion, J.D., Kawamura, N., Ohsawa, H., Gil de Muro, I., Suzuki, K., Plazaola, F., et al.: Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett. 8, 661 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsBen Gurion UniversityBeer ShevaIsrael
  2. 2.Raymond and Beverly Sackler School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Condensed Matter PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations