Journal of Statistical Physics

, Volume 157, Issue 4–5, pp 692–742 | Cite as

Scaling Limits and Critical Behaviour of the \(4\)-Dimensional \(n\)-Component \(|\varphi |^4\) Spin Model

  • Roland Bauerschmidt
  • David C. Brydges
  • Gordon Slade
Article

Abstract

We consider the \(n\)-component \(|\varphi |^4\) spin model on \({\mathbb {Z}}^4\), for all \(n \ge 1\), with small coupling constant. We prove that the susceptibility has a logarithmic correction to mean field scaling, with exponent \(\frac{n+2}{n+8}\) for the logarithm. We also analyse the asymptotic behaviour of the pressure as the critical point is approached, and prove that the specific heat has fractional logarithmic scaling for \(n =1,2,3\); double logarithmic scaling for \(n=4\); and is bounded when \(n>4\). In addition, for the model defined on the \(4\)-dimensional discrete torus, we prove that the scaling limit as the critical point is approached is a multiple of a Gaussian free field on the continuum torus, whereas, in the subcritical regime, the scaling limit is Gaussian white noise with intensity given by the susceptibility. The proofs are based on a rigorous renormalisation group method in the spirit of Wilson, developed in a companion series of papers to study the 4-dimensional weakly self-avoiding walk, and adapted here to the \(|\varphi |^4\) model.

Keywords

Renormalisation group Critical phenomena Logarithmic corrections Susceptibility Specific heat Scaling limit 

Mathematics Subject Classification

82B28 82B27 82B20 60K35 

References

  1. 1.
    Abdesselam, A.: A complete renormalization group trajectory between two fixed points. Commun. Math. Phys. 276, 727–772 (2007)MathSciNetCrossRefMATHADSGoogle Scholar
  2. 2.
    Abdesselam, A., Chandra, A., Guadagni, G.: Rigorous quantum field theory functional integrals over the \(p\)-adics I: Anomalous dimensions. Preprint (2013). arXiv:1302.5971
  3. 3.
    Adams, S., Kotecký, R., Müller, S.: Strict convexity of the surface tension for non-convex potentials, Preprint (2014)Google Scholar
  4. 4.
    Aizenman, M.: Geometric analysis of \(\varphi ^4\) fields and Ising models, Parts I and II. Commun. Math. Phys. 86, 1–48 (1982)MathSciNetCrossRefMATHADSGoogle Scholar
  5. 5.
    Aizenman, M., Fernández, R.: On the critical behavior of the magnetization in high dimensional Ising models. J. Stat. Phys. 44, 393–454 (1986)CrossRefMATHADSGoogle Scholar
  6. 6.
    Aizenman, M., Fernández, R.: Critical exponents for long-range interactions. Lett. Math. Phys. 16, 39–49 (1988)MathSciNetCrossRefMATHADSGoogle Scholar
  7. 7.
    Aizenman, M., Graham, R.: On the renormalized coupling constant and the susceptibility in \(\phi _4^4\) field theory and the Ising model in four dimensions. Nucl. Phys. B225(FS9), 261–288 (1983)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Amit, D.J.: Field Theory, the Renormalization Group, and Critical Phenomena, 2nd edn. World Scientific, Singapore (1984)Google Scholar
  9. 9.
    Aragão de Carvalho, C., Caracciolo, S., Fröhlich, J.: Polymers and \(g|\phi |^4\) theory in four dimensions. Nucl. Phys. B 215(FS7), 209–248 (1983)CrossRefADSGoogle Scholar
  10. 10.
    Bałaban, T.: Ultraviolet stability in field theory. The \(\phi ^4_3\) model. In: Fröhlich, J. (ed.) Scaling and Self-Similarity in Physics. Birkhäuser, Boston (1983)Google Scholar
  11. 11.
    Bałaban, T., O’Carroll, M.: Low temperature properties for correlation functions in classical \(N\)-vector spin models. Commun. Math. Phys. 199, 493–520 (1999)CrossRefMATHADSGoogle Scholar
  12. 12.
    Bauerschmidt, R.: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Preprint (2014). arXiv:1403.7268
  14. 14.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Preprint (2014). arXiv:1403.7422
  15. 15.
    Bauerschmidt, R., Brydges, D.C., Slade, G.. Ptsoft: python program for perturbative renormalisation group calculation, Version 1.0 [Software]. Available at http://www.math.ubc.ca/~slade/ (2014)
  16. 16.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: A renormalisation group method. III. Perturbative analysis, Preprint (2014). arXiv:1403.7252
  17. 17.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: Structural stability of a dynamical system near a non-hyperbolic fixed point. To appear in Annales Henri Poincaré. doi:10.1007/s00023-014-0338-0
  18. 18.
    Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)MATHGoogle Scholar
  19. 19.
    Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Oliveri, E., Presutti, E., Scacciatelli, E.: Some probabilistic techniques in field theory. Commun. Math. Phys. 59, 143–166 (1978)CrossRefMATHADSGoogle Scholar
  20. 20.
    Benfatto, G., Gallavotti, G.: Renormalization Group. Princeton University Press, Princeton (1995)MATHGoogle Scholar
  21. 21.
    Brézin, E., Le Guillou, J.C., Zinn-Justin, J.: Approach to scaling in renormalized perturbation theory. Phys. Rev. D 8, 2418–2430 (1973)CrossRefADSGoogle Scholar
  22. 22.
    Brydges, D.C.: Lectures on the renormalisation group. In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics, pp. 7–93. American Mathematical Society, Providence (2009). IAS/Park City Mathematics Series, Volume 16Google Scholar
  23. 23.
    Brydges, D.C., Guadagni, G., Mitter, P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)MathSciNetCrossRefMATHADSGoogle Scholar
  24. 24.
    Brydges, D.C., Mitter, P.K., Scoppola, B.: Critical \(({\Phi }^4)_{3,\epsilon }\). Commun. Math. Phys. 240, 281–327 (2003)MathSciNetCrossRefMATHADSGoogle Scholar
  25. 25.
    Brydges, D.C., Slade, G.: A renormalisation group method. I. Gaussian integration and normed algebras, Preprint (2014).Google Scholar
  26. 26.
    Brydges, D.C., Slade, G.: A renormalisation group method. II. Approximation by local polynomials, Preprint (2014). arXiv:1403.7244
  27. 27.
    Brydges, D.C., Slade, G.: A renormalisation group method. IV. Stability analysis, Preprint (2014). arXiv:1403.7253
  28. 28.
    Brydges, D.C., Slade, G.: A renormalisation group method. V. A single renormalisation group step, Preprint (2014). arXiv:1403.7255
  29. 29.
    Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996). arXiv:1403.7256
  30. 30.
    Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189, 515–580 (2012)MathSciNetCrossRefMATHADSGoogle Scholar
  31. 31.
    Dimock, J.: The renormalization group according to Bałaban I. Small fields. Rev. Math. Phys. 25, 1330010 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Domb, C: The Critical Point. A historical introduction to the modern theory of critical phenomena. Taylor and Francis, London (1996)Google Scholar
  33. 33.
    Falco, P.: Kosterlitz-Thouless transition line for the two dimensional Coulomb gas. Commun. Math. Phys. 312, 559–609 (2012)MathSciNetCrossRefMATHADSGoogle Scholar
  34. 34.
    Falco, P: Critical exponents of the two dimensional Coulomb gas at the Berezinskii–Kosterlitz–Thouless transition. Preprint (2013)Google Scholar
  35. 35.
    Feldman, J., Knörrer, H., Trubowitz, E.: Fermionic Functional Integrals and the Renormalization Group. CRM Monograph Series, vol. 16. American Mathematical Society, Providence (2002)Google Scholar
  36. 36.
    Feldman, J., Knörrer, H., Trubowitz, E.: A two dimensional Fermi liquid. Part 1: overview. Commun. Math. Phys. 247, 1–47 (2004)CrossRefMATHADSGoogle Scholar
  37. 37.
    Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Construction and Borel summability of infrared \(\Phi ^4_4\) by a phase space expansion. Commun. Math. Phys. 109, 437–480 (1987)CrossRefADSGoogle Scholar
  38. 38.
    Fernández, R., Fröhlich, J., Sokal, A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  39. 39.
    Fisher, M.E., Ma, S., Nickel, B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917–920 (1972)CrossRefADSGoogle Scholar
  40. 40.
    Fröhlich, J.: On the triviality of \(\varphi _d^4\) theories and the approach to the critical point in \(d \ge 4\) dimensions. Nucl. Phys. B200(FS4), 281–296 (1982)CrossRefADSGoogle Scholar
  41. 41.
    Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)CrossRefADSGoogle Scholar
  42. 42.
    Gawȩdzki, K., Kupiainen, A.: A rigorous block spin approach to massless lattice theories. Commun. Math. Phys. 77, 31–64 (1980)CrossRefADSGoogle Scholar
  43. 43.
    Gawȩdzki, K., Kupiainen, A.: Massless lattice \(\varphi ^4_4\) theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 199–252 (1985)Google Scholar
  44. 44.
    Gawȩdzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In: Osterwalder, K., Stora, R. (eds.), Critical Phenomena, Random Systems, Gauge Theories, Amsterdam, (1986). North-Holland. Les Houches (1984)Google Scholar
  45. 45.
    de Gennes, P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A38, 339–340 (1972)CrossRefADSGoogle Scholar
  46. 46.
    Giuliani, A., Mastropietro, V., Porta, M.: Universality of conductivity in interacting graphene. Commun. Math. Phys. 311, 317–355 (2012)MathSciNetCrossRefMATHADSGoogle Scholar
  47. 47.
    Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987)Google Scholar
  48. 48.
    Hara, T.: A rigorous control of logarithmic corrections in four dimensional \(\varphi ^4\) spin systems. I. Trajectory of effective Hamiltonians. J. Stat. Phys. 47, 57–98 (1987)MathSciNetCrossRefADSGoogle Scholar
  49. 49.
    Hara, T., Tasaki, H.: A rigorous control of logarithmic corrections in four dimensional \(\varphi ^4\) spin systems. II. Critical behaviour of susceptibility and correlation length. J. Stat. Phys. 47, 99–121 (1987)MathSciNetCrossRefADSGoogle Scholar
  50. 50.
    Heydenreich, M.: Long-range self-avoiding walk converges to alpha-stable processes. Ann. I. Henri Poincaré Probab. Stat. 47, 20–42 (2011)MathSciNetCrossRefMATHADSGoogle Scholar
  51. 51.
    Heydenreich, M., van der Hofstad, R., Sakai, A.: Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132, 1001–1049 (2008)MathSciNetCrossRefMATHADSGoogle Scholar
  52. 52.
    Kadanoff, L.P.: Scaling laws for Ising models near \({T}_c\). Physics 2, 263–272 (1966)Google Scholar
  53. 53.
    Larkin, A.I., Khmel’Nitskiĭ, D.E.: Phase transition in uniaxial ferroelectrics. Soviet Physics JETP, 29:1123–1128, (1969). English translation of Zh. Eksp. Teor. Fiz. 56, 2087–2098 (1969)Google Scholar
  54. 54.
    Lebowitz, J.L., Presutti, E.: Statistical mechanics of systems of unbounded spins. Commun. Math. Phys. 50, 195–218 (1976)MathSciNetCrossRefADSGoogle Scholar
  55. 55.
    Lundow, P.H., Markström, K.: Critical behavior of the Ising model on the four-dimensional cubic lattice. Phys. Rev. E 80, 031104 (2009)CrossRefADSGoogle Scholar
  56. 56.
    Mastropietro, V.: Non-Perturbative Renormalization. World Scientific, Singapore (2008)CrossRefMATHGoogle Scholar
  57. 57.
    Mitter, P.K., Scoppola, B.: The global renormalization group trajectory in a critical supersymmetric field theory on the lattice \({\mathbf{Z}}^3\). J. Stat. Phys. 133, 921–1011 (2008)MathSciNetCrossRefMATHADSGoogle Scholar
  58. 58.
    Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74, 119–128 (1980)CrossRefMATHADSGoogle Scholar
  59. 59.
    Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton University Press, Princeton (1991)Google Scholar
  60. 60.
    Sakai, A.: Application of the lace expansion to the \(\varphi ^4\) model. Preprint (2014)Google Scholar
  61. 61.
    Sakai, A.: Lace expansion for the Ising model. Commun. Math. Phys. 272, 283–344 (2007)CrossRefMATHADSGoogle Scholar
  62. 62.
    Salmhofer, M.: Renormalization: An Introduction. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  63. 63.
    Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Simon, B.: Functional Integration and Quantum Physics. Academic Press, New York (1979)MATHGoogle Scholar
  65. 65.
    Simon, B., Griffiths, R.B.: The \((\phi ^4)_2\) field theory as a classical Ising model. Commun. Math. Phys. 33, 145–164 (1973)MathSciNetCrossRefADSGoogle Scholar
  66. 66.
    Slade, G.: The Lace Expansion and its Applications. Springer, Berlin, (2006). Lecture Notes in Mathematics, vol. 1879. Ecole d’Eté de Probabilités de Saint-Flour XXXIV-2004Google Scholar
  67. 67.
    Slade, G., Tomberg, A.: In preparationGoogle Scholar
  68. 68.
    Sokal, A.D.: A rigorous inequality for the specific heat of an Ising or \(\varphi ^4\) ferromagnet. Phys. Lett. 71A, 451–453 (1979)MathSciNetCrossRefADSGoogle Scholar
  69. 69.
    Wegner, F.J., Riedel, E.K.: Logarithmic corrections to the molecular-field behavior of critical and tricritical systems. Phys. Rev. B 7, 248–256 (1973)CrossRefADSGoogle Scholar
  70. 70.
    Wilson, K.G.: Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3184–3205 (1971)CrossRefMATHADSGoogle Scholar
  71. 71.
    Wilson, K.G.: Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B 4, 3174–3183 (1971)CrossRefMATHADSGoogle Scholar
  72. 72.
    Wilson, K.G.: The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)CrossRefADSGoogle Scholar
  73. 73.
    Wilson, K.G.: Renormalization group methods. Adv. Math. 16, 170–186 (1975)CrossRefGoogle Scholar
  74. 74.
    Wilson, K.G., Fisher, M.E.: Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28, 240–243 (1972)CrossRefADSGoogle Scholar
  75. 75.
    Wilson, K.G., Kogut, J.: The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75–200 (1974)CrossRefADSGoogle Scholar
  76. 76.
    Zinn-Justin, J.: Phase Transitions and Renormalization Group. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Roland Bauerschmidt
    • 1
  • David C. Brydges
    • 2
  • Gordon Slade
    • 2
  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations