Journal of Statistical Physics

, Volume 156, Issue 5, pp 932–947 | Cite as

Counter-Ions Between or at Asymmetrically Charged Walls: 2D Free-Fermion Point

  • Ladislav Šamaj
  • Emmanuel TrizacEmail author


This work contributes to the problem of determining effective interaction between asymmetrically (likely or oppositely) charged objects whose total charge is neutralized by mobile pointlike counter-ions of the same charge, the whole system being in thermal equilibrium. The problem is formulated in two spatial dimensions with logarithmic Coulomb interactions. The charged objects correspond to two parallel lines at distance \(d\), with fixed line charge densities. Two versions of the model are considered: the standard “unconstrained” one with particles moving freely between the lines and the “constrained” one with particles confined to the lines. We solve exactly both systems at the free-fermion coupling and compare the results for the pressure (i.e. the force between the lines per unit length of one of the lines) with the mean-field Poisson-Boltzmann solution. For the unconstrained model, the large-\(d\) asymptotic behaviour of the free-fermion pressure differs from that predicted by the mean-field theory. For the constrained model, the asymptotic pressure coincides with the attractive van der Waals-Casimir fluctuational force. For both models, there are fundamental differences between the cases of likely-charged and oppositely-charged lines, the latter case corresponding at large distances \(d\) to a capacitor.


Logarithmic Coulomb interaction Free-fermion point  Exactly solvable models van der Waals-Casimir force 



The support received from Grant VEGA No. 2/0049/12 is acknowledged.


  1. 1.
    Andelman, D.: Introduction to electrostatics in soft and biological matter. In: Poon, W.C.K., Andelman, D. (eds.) Soft Condensed Matter Physics in Molecular and Cell Biology, vol. 6. Taylor & Francis, New York (2006)Google Scholar
  2. 2.
    Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Buenzli, P.R., Martin, PhA: Microscopic origin of universality in Casimir forces. J. Stat. Phys. 119, 273–307 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Burak, Y., Andelman, D.: Test-charge theory for the electric double layer. Phys. Rev. E 70, 016102 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Carnie, S.L., Chan, D.Y.C.: The statistical mechanics of the electrical double layer: stress tensor and contact conditions. J. Chem. Phys. 74, 1293–1297 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    Choquard, Ph: The two-dimensional one component plasma on a periodic strip. Helv. Phys. Acta 54, 332–332 (1981)Google Scholar
  7. 7.
    Cornu, F., Jancovici, B.: On the two-dimensional Coulomb gas. J. Stat. Phys. 49, 33–56 (1987)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cornu, F., Jancovici, B.: The electrical double layer: a solvable model. J. Chem. Phys. 90, 2444–2452 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    Forrester, P.J.: Exact results for two-dimensional Coulomb systems. Phys. Rep. 301, 235–270 (1998)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Henderson, D., Blum, L.: Some exact results and the application of the mean spherical approximation to charged hard spheres near a charged hard wall. J. Chem. Phys. 69, 5441–5449 (1978)ADSCrossRefGoogle Scholar
  11. 11.
    Jancovici, B.: Exact results for the two-dimensional one-component plasma. Phys. Rev. Lett. 46, 386–388 (1981)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jancovici, B.: Inhomogeneous two-dimensional plasmas. In: Henderson, D. (ed.) Inhomogeneous Fluids, pp. 201–237. Dekker, New York (1992)Google Scholar
  13. 13.
    Jancovici, B., Šamaj, L.: Screening of classical Casimir forces by electrolytes in semi-infinite geometries. J. Stat. Mech., P08006 (2004)Google Scholar
  14. 14.
    Kanduč, M., Trulsson, M., Naji, A., Burak, Y., Forsman, J., Podgornik, R.: Weak- and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces. Phys. Rev. E 78, 061105 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Lau, A.W.C., Levine, D., Pincus, P.: Novel electrostatic attraction from plasmon fluctuations. Phys. Rev. Lett. 84, 4116–4119 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Lau, A.W.C., Pincus, P., Levine, D., Fertig, H.A.: Electrostatic attraction of coupled Wigner crystals: finite temperature effects. Phys. Rev. E 63, 051604 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Martin, PhA: Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075–1127 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    Milton, K.A.: The Casimir Effect. World Scientific, London (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Netz, R.R., Orland, H.: Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions. Eur. Phys. J. E 1, 203–214 (2000)CrossRefGoogle Scholar
  20. 20.
    Netz, R.R.: Electrostatics of counter-ions at and between planar charged walls:from Poisson-Boltzmann to the strong-coupling theory. Eur. Phys. J. E 5, 557–574 (2001)CrossRefGoogle Scholar
  21. 21.
    Paillusson, F., Trizac, E.: Interaction regimes for oppositely charged plates with multivalent counterions. Phys. Rev. E 84, 011407 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Šamaj, L., Percus, J.K.: A functional relation among the pair correlations of the two-dimensional one-component plasma. J. Stat. Phys. 80, 811–824 (1995)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Šamaj, L., Wagner, J., Kalinay, P.: Translation symmetry breaking in the one-component plasma on the cylinder. J. Stat. Phys. 117, 159–178 (2004)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Šamaj, L., Trizac, E.: Counterions at highly charged interfaces: from one plate to like-charge attraction. Phys. Rev. Lett. 106, 078301 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Šamaj, L., Trizac, E.: Counter-ions at charged walls: two-dimensional systems. Eur. Phys. J. E 34, 20 (2011)CrossRefGoogle Scholar
  26. 26.
    Šamaj, L., Trizac, E.: Critical phenomena and phase sequence in a classical bilayer Wigner crystal at zero temperature. Phys. Rev. B 85, 205131 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Shklovskii, B.I.: Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys. Rev. E 60, 5802–5811 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    dos Santos, A.P., Diehl, A., Levin, Y.: Electrostatic correlations in colloidal suspensions: density profiles and effective charges beyond the Poisson-Boltzmann theory. J. Chem. Phys. 130, 124110 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Mallarino, J.P., Téllez, G., Trizac, E.: Counter-ion density profile around charged cylinders: the strong-coupling needle limit. J. Phys. Chem. B 117, 12702 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique et Modèles StatistiquesUniversité Paris-SudOrsayFrance
  2. 2.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations