Journal of Statistical Physics

, Volume 155, Issue 5, pp 909–931 | Cite as

Critical Study of Hierarchical Lattice Renormalization Group in Magnetic Ordered and Quenched Disordered Systems: Ising and Blume–Emery–Griffiths Models

  • F. Antenucci
  • A. Crisanti
  • L. LeuzziEmail author


Renormalization group based on the Migdal–Kadanoff bond removal approach is often considered a simple and valuable tool to understand the critical behavior of complicated statistical mechanical models. In presence of quenched disorder, however, predictions obtained with the Migdal–Kadanoff bond removal approach quite often fail to quantitatively and qualitatively reproduce critical properties obtained in the mean-field approximation or by numerical simulations in finite dimensions. In an attempt to overcome this limitation we analyze the behavior of Ising and Blume–Emery–Griffiths models on more structured hierarchical lattices. We find that, apart from some exceptions, the failure is not limited to Midgal–Kadanoff cells but originates right from the hierarchization of Bravais lattices on small cells, and shows up also when in-cell loops are considered.


Hierarchical lattice Renormalization group Critical behavior  Migdal–Kadanoff Ferromagnet Spin-glass Ising model Blume–Emery–Griffiths model 



The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n 290038, NETADIS project and from the Italian MIUR under the Basic Research Investigation Fund FIRB2008 program, Grant No. RBFR08M3P4, and under the PRIN2010 program, grant code 2010HXAW77-008.


  1. 1.
    Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754n++1756 (1979)Google Scholar
  2. 2.
    Parisi, G.: A sequence of approximated solutions to the S–K model for spin glasses. J. Phys. A Math. Gen. 13, L115 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    Mézard, M., Parisi, G., Virasoro, M.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)zbMATHGoogle Scholar
  4. 4.
    Amit, D.J.: Modeling Brain Functions: The World of Attractor Neural Networks. Cambridge University Press, Cambridge (1992)Google Scholar
  5. 5.
    Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, Oxford (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, J.H., Lubensky, T.C.: Mean field and \(\epsilon \)-expansion study of spin glasses. Phys. Rev. B 16, 2106 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    De Dominicis, C., Kondor, I., Temesvari, T.: Beyond the Sherrington–Kirkpatrick model. In: Directions in Condensed Matter Physics, vol. 12, p. 119. World Scientific, Singapore (1998)Google Scholar
  8. 8.
    De Dominicis, C., Giardina, I.: Random Fields and Spin Glasses. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  9. 9.
    Bray, A.J., Moore, M.A.: Disappearance of the de Almeida-Thouless line in six dimensions. Phys. Rev. B 83, 224408 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Parisi, G., Temesvari, T.: Replica symmetry breaking in and around six dimensions. Nucl. Phys. B [FS] 858, 293–316 (2012)Google Scholar
  11. 11.
    Stein, D.L., Newman, C.M.: Spin Glasses and Complexity. Princeton University Press, Princeton (2012)Google Scholar
  12. 12.
    Amit, D.J., Martin-Mayor, V.: Field Theory; The Renormalization Group and Critical Phenomena. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  13. 13.
    Le Bellac, M.: Quantum and Statistical Field Theory. Oxford Science Publications, Oxford (1992)Google Scholar
  14. 14.
    Kadanoff, L.P.: Notes on Migdal’s recursion formulas. Ann. Phys. 100(1), 359–394 (1976)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ma, S.K.: Modern Theory of Critical Phenomena. Benjamin-Cummings, Reading (1976)Google Scholar
  16. 16.
    Leeuwen, J.M.J., Niemeijer, T.: Wilson theory for spin systems on triangular lattice. Phys. Rev. Lett. 31(23), 1411 (1973)ADSCrossRefGoogle Scholar
  17. 17.
    Berker, A.N., Wortis, M.: Blume–Emery–Griffiths–Potts model in two dimensions: phase diagram and critical proprieties from a position-space renormalization group. Phys. Rev. B 14(11), 4946 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    Fisher, K.H., Kinzel, W.: Existence of a phase transition in spin glasses? J. Phys. C 11, 2115 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    Tatsumi, T.: Renormalization-group approach to spin glass transition of a random bond Ising model in two- and three-dimensions. Prog. Theor. Phys. 59, 405 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    Franz, S., Parisi, G., Virasoro, M.A.: Interfaces and louver critical dimension in a spin glass model. J. Phys. I (France) 4, 1657 (1994)Google Scholar
  21. 21.
    Franz, S., Toninelli, F.L.: A field-theoretical approach to the spin glass transition: models with long but finite interaction range. J. Stat. Mech. P01008 (2005)Google Scholar
  22. 22.
    Boettcher, S.: Stiffness of the Edwards–Anderson model in all dimensions. Phys. Rev. Lett. 95, 197205 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Berker, A.N., Ostlund, S.: Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering. J. Phys. C 12(22), 4961 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    Griffiths, R.B., Kaufman, M.: Spin systems on hierarchical lattices. Introduction and thermodynamic limit. Phys. Rev. B 26, 5022–5032 (1982)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    McKay, S.R., Berker, A.N., Kirkpatrick, S.: Spin-glass behavior in frustrated Ising models with chaotic renormalization-group trajectories. Phys. Rev. Lett. 48, 767–770 (1982)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ohzeki, M., Nishimori, H., Berker, A.N.: Multicritical points for spin-glass models on hierarchical lattices. Phys. Rev. E 77, 061116 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Salmon, O.R., Agostini, B.T., Nobre, F.D.: Ising spin glasses on Wheatstone–Bridge hierarchical lattices. Phys. Lett. A 374(15–16), 1631–1635 (2010)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Moore, M.A., Bokil, H., Drossel, B.: Evidence for the droplet picture of spin glasses. Phys. Rev. Lett. 81, 4252 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Ricci-Tersenghi, F., Ritort, F.: Absence of ageing in the remanent magnetization in Migdal–Kadanoff spin glasses. J. Phys. A Math. Gen. 33, 3727 (2000)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Nobre, F.D.: Phase diagram of the two-dimensional \(\pm \)J Ising spin glass. Phys. Rev. E 64, 046108 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Nishimori, H., Ohzeki, M.: Multicritical point of spin glasses. Phys. A Stat. Mech. Appl. 389, 2907–2910 (2010)CrossRefGoogle Scholar
  32. 32.
    Andelman, D., Berker, A.N.: q-State Potts models in \(d\) dimensions: Migdal–Kadanoff approximation. J. Phys. A Math. Gen. 14(4), L91 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    Ozcelik, V.O., Berker, A.N.: Blume–Emery–Griffiths spin glass and inverted tricritical points. Phys. Rev. E 78, 031104 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    da Silva, L.R., Tsallis, C., Schwachheim, G.: Anisotropic cubic lattice Potts ferromagnet: renormalisation group treatment. J. Phys. A Math. Gen. 17, 3209 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    Tsallis, C., de Magalhães, A.C.N.: Pure and random Potts-like models: real-space renormalization-group approach. Phys. Rep. 268(5–6), 305–430 (1996)ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    Crisanti, A., Leuzzi, L.: Stable solution of the simplest spin model for inverse freezing. Phys. Rev. Lett. 95, 087201 (2005)Google Scholar
  37. 37.
    Paoluzzi, M., Leuzzi, L., Crisanti, A.: Thermodynamic first order transition and inverse freezing in a 3D spin glass. Phys. Rev. Lett. 104, 120602 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Crisanti, A., Leuzzi, L., Rizzo, T.: Complexity in mean-field spin glass models: the Ising p-spin. Phys. Rev. B 71, 094202 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Leuzzi, L., Paoluzzi, M., Crisanti, A.: Random Blume–Capel model on a cubic lattice: first-order inverse freezing in a three-dimensional spin-glass system. Phys. Rev. B 83, 014107 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Paoluzzi, M., Leuzzi, L., Crisanti, A.: The overlap parameter across an inverse first-order phase transition in a 3D spin-glass. Philos. Mag. 91, 1966–1976 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Migdal, A.A.: Phase transitions in gauge and spin-lattice systems. Zh. Eksp. Teor. Fiz. 69, 1457 (1975)Google Scholar
  42. 42.
    Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge (1996)Google Scholar
  43. 43.
    Harris, A.B., Lubemsky, T.C.: Renormalization-group approach to the critical behavior of random-spin models. Phys. Rev. Lett. 33, 1540 (1974)ADSCrossRefGoogle Scholar
  44. 44.
    Andelman, D., Berker, A.N.: Scale-invariant quenched disorder and its stability criterion at random critical points. Phys. Rev. B 29, 2630–2635 (1984)ADSCrossRefGoogle Scholar
  45. 45.
    Southern, B.W., Young, A.P.: Real space rescaling study of spin glass behaviour in three dimensions. J. Phys. C 10, 2179 (1977)ADSCrossRefGoogle Scholar
  46. 46.
    Cao, M.S., Machta, J.: Migdal-Kadanoff study of the random-field Ising model. Phys. Rev. B 48, 3177–3182 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    Salmon, O.R., Nobre, F.D.: Spin-glass attractor on tridimensional hierarchical lattices in the presence of an external magnetic field. Phys. Rev. E 79, 051122 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Berker, A.N.: Comment on “Spin-glass attractor on tridimensional hierarchical lattices in the presence of an external magnetic field”. Phys. Rev. E 81, 043101 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Bray, A.J., Moore, M.A.: Scaling theory of the random-field Ising model. J. Phys. C. Solid State Phys. 18(28), L927 (1985)ADSCrossRefMathSciNetGoogle Scholar
  50. 50.
    Berker, A.N., McKay, S.R.: Modified hyperscaling relation for phase transitions under random fields. Phys. Rev. B 33, 4712–4715 (1986)ADSCrossRefGoogle Scholar
  51. 51.
    Falicov, A., Berker, A.N., McKay, S.R.: Renormalization-group theory of the random-field Ising model in three dimensions. Phys. Rev. B 51, 8266–8269 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    Middleton, A.A., Fisher, D.S.: Three-dimensional random-field Ising magnet: interfaces, scaling, and the nature of states. Phys. Rev. B 65, 134411 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    Hartmann, A.K.: Critical exponents of four-dimensional random-field Ising systems. Phys. Rev. B 65, 174427 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    Harris, A.B.: Effect of random defects on the critical behaviour of Ising models. J. Phys. C Solid State Phys. 7, 1671 (1974)ADSCrossRefGoogle Scholar
  55. 55.
    Chayes, J.T., Chayes, L., Fisher, D.S., Spencer, T.: Finite-size scaling and correlation lengths for disordered systems. Phys. Rev. Lett. 57, 2999–3002 (1986)ADSCrossRefMathSciNetGoogle Scholar
  56. 56.
    Kinzel, W., Domany, E.: Critical properties of random Potts models. Phys. Rev. B 23, 3421–3434 (1981)ADSCrossRefMathSciNetGoogle Scholar
  57. 57.
    Andelman, D., Aharony, A.: Critical behavior with axially correlated random bonds. Phys. Rev. B 31, 4305–4312 (1985)ADSCrossRefGoogle Scholar
  58. 58.
    Derrida, B., Dickinson, H., Yeomans, J.: On the Harris criterion for hierarchical lattices. J. Phys. A 18(1), L53 (1985)ADSCrossRefMathSciNetGoogle Scholar
  59. 59.
    Mukherji, S., Bhattacharjee, S.M.: Failure of the Harris criterion for directed polymers on hierarchical lattices. Phys. Rev. E 52, 1930–1933 (1995)ADSCrossRefGoogle Scholar
  60. 60.
    Efrat, A.: Harris criterion on hierarchical lattices: rigorous inequalities and counterexamples in Ising systems. Phys. Rev. E 63, 066112 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    Domany, E.: Some results for the two-dimensional Ising model with competing interactions. J. Phys. C 12, L119 (1979)ADSCrossRefGoogle Scholar
  62. 62.
    Ohzeki, M., Thomas, C.K., Katzgraber, H.G., Bombin, H., Martin-Delgado, M.A.: Lack of universality in phase boundary slopes for spin glasses on self dual lattices. J. Stat. Mech. P02004 (2011)Google Scholar
  63. 63.
    Ohzeki, M., Nishimori, H.: Analytical evidence for the absence of spin glass transition on self-dual lattices. J. Phys. A Math. Gen. 42, 332001 (2009)CrossRefMathSciNetGoogle Scholar
  64. 64.
    Nishimori, H.: Internal energy, specific heat and correlation function of the bond-random Ising model. Prog. Theor. Phys. 66, 1169 (1981)ADSCrossRefGoogle Scholar
  65. 65.
    Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford University Press, Oxford (2001)CrossRefGoogle Scholar
  66. 66.
    Nishimori, H., Nemoto, K.: Duality and multicritical point of two-dimensional spin glasses. J. Phys. Soc. Jpn. 71, 1198 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    Maillard, J.M., Nemoto, K., Nishimori, H.: Symmetry, complexity and multicritical point of the two-dimensional spin glass. J. Phys. A 36, 9799 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    Takeda, K., Nishimori, H.: Self-dual random-plaquette gauge model and the quantum toric code. Nucl. Phys. B 686(3), 377–396 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  69. 69.
    Hinczewski, M., Berker, A.N.: Multicritical point relations in three dual pairs of hierarchical-lattice Ising spin glasses. Phys. Rev. B 72, 144402 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    Reis, F.D.A.A., de Queiroz, S.L.A., dos Santos, R.R.: Universality, frustration, and conformal invariance in two-dimensional random Ising magnets. Phys. Rev. B 60, 6740–6748 (1999)ADSCrossRefGoogle Scholar
  71. 71.
    Singh, R.R.P., Adler, J.: High-temperature expansion study of the Nishimori multicritical point in two and four dimensions. Phys. Rev. B 54, 364–367 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    Ozeki, Y., Ito, N.: Multicritical dynamics for the +/\(-\) J Ising model. J. Phys. A 31, 5451 (1998)ADSCrossRefzbMATHGoogle Scholar
  73. 73.
    Kawashima, N., Rieger, H.: Finite-size scaling analysis of exact ground states for +/\(-\)J spin glass models in two dimensions. Europhys. Lett. 39, 85 (1997)ADSCrossRefGoogle Scholar
  74. 74.
    Bray, A.J., Moore, M.A.: Heidelberg colloquium on glassy dynamics. In: van Hemmen, J.L. (ed) Lecture Notes in Physics., vol. 275, pp. 121–153. Springer, Berlin (1987)Google Scholar
  75. 75.
    Bray, A.J., Moore, M.A.: Lower critical dimension of Ising spin glasses: a numerical study. J. Phys. C 17(18), L463 (1984)ADSCrossRefGoogle Scholar
  76. 76.
    Nobre, F.D.: Real-space renormalization-group approaches for two-dimensional Gaussian Ising spin glass. Phys. Lett. A 250, 163 (1998)ADSCrossRefGoogle Scholar
  77. 77.
    Hartmann, A.K., Bray, A.J., Carter, A.C., Moore, M.A., Young, A.P.: Stiffness exponent of two-dimensional Ising spin glasses for nonperiodic boundary conditions using aspect-ratio scaling. Phys. Rev. B 66, 224401 (2002)ADSCrossRefGoogle Scholar
  78. 78.
    Weigel, M., Johnston, D.: Frustration effects in antiferromagnets on planar random graphs. Phys. Rev. B 76, 054408 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    Erbas, A., Tuncer, A., Yücesoy, B., Berker, A.N.: Phase diagrams and crossover in spatially anisotropic \(d=3\) Ising, \(XY\) magnetic, and percolation systems: exact renormalization-group solutions of hierarchical models. Phys. Rev. E 72, 026129 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    Talapov, A.L., Blöte, H.W.J.: The magnetization of the 3D Ising model. J. Phys. A 29(17), 5727 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  81. 81.
    Nienhuis, B., Nauenberg, M.: First-order phase transitions in renormalization-group theory. Phys. Rev. Lett. 35, 477–479 (1975)ADSCrossRefGoogle Scholar
  82. 82.
    Pelissetto, A., Vicari, E.: Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549–727 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  83. 83.
    Katzgraber, H.G., Körner, M., Young, A.P.: Universality in three-dimensional Ising spin glasses: a Monte Carlo study. Phys. Rev. B 73(22), 224432 (2006)ADSCrossRefGoogle Scholar
  84. 84.
    Hasenbusch, M., Pelissetto, A., Vicari, E.: Critical behavior of three-dimensional Ising spin glass models. Phys. Rev. B 78, 214205 (2008)ADSCrossRefMathSciNetGoogle Scholar
  85. 85.
    Jörg, T., Katzgraber, H.G.: Evidence for universal scaling in the spin-glass phase. Phys. Rev. Lett. 101(19), 197205 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    Blume, M., Emery, V.J., Griffiths, R.B.: Ising model for the \(\lambda \) transition and phase separation in He\(^{3}\)–He\(^{4}\) mixtures. Phys. Rev. A 4, 1071–1077 (1971)ADSCrossRefGoogle Scholar
  87. 87.
    Blume, M.: Theory of the first-order magnetic phase change in UO\(_{2}\). Phys. Rev. 141, 517 (1966)ADSCrossRefGoogle Scholar
  88. 88.
    Capel, H.W.: On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966 (1966)ADSCrossRefGoogle Scholar
  89. 89.
    Saul, D.M., Wortis, M., Stauffer, D.: Tricritical behavior of the Blume–Capel model. Phys. Rev. B 9, 4964 (1974)ADSCrossRefGoogle Scholar
  90. 90.
    Deserno, M.: Tricriticality and the Blume–Capel model: a Monte Carlo study within the microcanonical ensemble. Phys. Rev. E 56, 5204 (1997)ADSCrossRefGoogle Scholar
  91. 91.
    Chakraborty, K.G.: Effective-field model for a spin-1 Ising system with dipolar and quadrupolar interactions. Phys. Rev. B 29, 1454–1457 (1984)ADSCrossRefGoogle Scholar
  92. 92.
    Baran, O.R., Levitskii, R.R.: Reentrant phase transitions in the Blume–Emery–Griffiths model on a simple cubic lattice: the two-particle cluster approximation. Phys. Rev. B 65, 172407 (2002)ADSCrossRefGoogle Scholar
  93. 93.
    Crisanti, A., Leuzzi, L.: First-order phase transition and phase coexistence in a spin-glass model. Phys. Rev. Lett. 89, 237204 (2002)ADSCrossRefGoogle Scholar
  94. 94.
    Crisanti, A., Ritort, F.: Intermittency of glassy relaxation and the emergence of a non-equilibirum spontaneous measure in the aging regime. Europhys. Lett. 66, 253 (2004)ADSCrossRefGoogle Scholar
  95. 95.
    Falicov, A., Berker, A.N.: Tricritical and critical end-point phenomena under random bonds. Phys. Rev. Lett. 76, 4380–4383 (1996)ADSCrossRefGoogle Scholar
  96. 96.
    Puha, I., Diep, H.T.: Random-bond and random-anisotropy effects in the phase diagram of the Blume–Capel model. J. Magn. Magn. Mater. 224, 85–92 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità SapienzaRomeItaly
  2. 2.IPCF-CNRUOS Roma KerberosRomeItaly
  3. 3.ISC-CNRUOS SapienzaRomeItaly

Personalised recommendations