Journal of Statistical Physics

, Volume 155, Issue 2, pp 277–299 | Cite as

Transmission–Reflection Coefficient in the Lattice Boltzmann Method

  • Hiroaki Yoshida
  • Hidemitsu Hayashi


We consider the permeable bounce-back scheme in the lattice Boltzmann (LB) method for incompressible flows, in which a fraction of the distribution function is bounced back and the remainder travels to the neighboring lattice points. An asymptotic analysis of the scheme is carried out in order to show that the fractional coefficient, referred to as the transmission–reflection coefficient, relates the pressure drop to the flow velocity. The derived relation, which clarifies the role played by the transmission–reflection coefficient in the macroscopic description, is helpful in using the scheme to simulate flows involving a pressure drop or gradient. The scheme is compared with the existing methods in which the transmission–reflection coefficient is employed, and the difference is clarified. As an application of the permeable bounce-back scheme, we perform an LB simulation for flows through porous media described by the Brinkman model.


Lattice Boltzmann method Permeable bounce-back rule  Asymptotic analysis Brinkman model 



The authors would like to thank Professor Li-Shi Luo and Professor Pierre Lallemand for their valuable comments and useful discussions. The present work was partially supported by MEXT program “Elements Strategy Initiative to Form Core Research Center” (since 2012). (MEXT stands for Ministry of Education Culture, Sports, Science and Technology, Japan.)


  1. 1.
    Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Asinari, P.: Multiple-relaxation-time lattice Boltzmann scheme for homogeneous mixture flows with external force. Phys. Rev. E 77, 056706 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1, 27–34 (1949)CrossRefzbMATHGoogle Scholar
  4. 4.
    Caiazzo, A.: Analysis of lattice Boltzmann initialization routines. J. Stat. Phys. 121, 37–48 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Caiazzo, A., Junk, M., Rheinländer, M.: Comparison of analysis techniques for the lattice Boltzmann method. Comput. Math. Appl. 58, 883–897 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cercignani, C.: The Boltzmann Equation and its Application. Springer-Verlag, New York (1988)CrossRefGoogle Scholar
  7. 7.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, Y., Zhu, K.: A study of the upper limit of solid scatters density for gray lattice Boltzmann method. Acta Mech. Sin. 24, 515–522 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dardis, O., McCloskey, J.: Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media. Phys. Rev. E 57, 4834–4837 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Gao, Y., Sharma, M.M.: A LGA model for fluid flow in heterogeneous porous media. Transp. Porous Media 17, 1–17 (1994)CrossRefGoogle Scholar
  11. 11.
    Ginzburg, I.: Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman–Enskog expansion. Phys. Rev. E 77, 066704 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Guo, Z., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Guo, Z., Zheng, C., Shi, B.C.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Han, K., Feng, Y.T., Owen, D.R.J.: Modelling of thermal contact resistance within the framework of the thermal lattice Boltzmann method. Int. J. Therm. Sci. 47, 1276–1283 (2008)CrossRefGoogle Scholar
  15. 15.
    Hayashi, H., Kubo, S.: Computer simulation study on filtration of soot particles in diesel particulate filter. Comput. Math. Appl. 55, 1450–1460 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    He, X., Chen, S., Doolen, G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hou, S., Zou, Q., Chen, S., Doolen, G.D., Cogley, A.C.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118, 329–347 (1995)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Inamuro, T., Yoshino, M., Ogino, F.: Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number. Phys. Fluids 9, 3535–3542 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Junk, M., Klar, A., Luo, L.S.: Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys. 210, 676–704 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Junk, M., Yang, Z.: Asymptotic analysis of lattice Boltzmann boundary conditions. J. Stat. Phys. 121, 3–35 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kang, Q., Zhang, D., Chen, S.: Unified lattice Boltzmann method for flow in multiscale porous media. Phys. Rev. E 66, 056307 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Martys, N., Bentz, D.P., Garboczi, E.J.: Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids 6, 1434–1439 (1994)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Martys, N.S.: Improved approximation of the Brinkman equation using a lattice Boltzmann method. Phys. Fluids 13, 1807–1810 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Martys, N.S., Hagedorn, J.G.: Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods. Mater. Struct. 35, 650–658 (2002)CrossRefGoogle Scholar
  26. 26.
    Mei, R., Luo, L.S., Lallemand, P., d’Hmières, D.: Consistent initial conditions for lattice Boltzmann simulations. Comput. Fluids 35, 855–862 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Phelan Jr, F.R., Wise, G.: Analysis of transverse flow in aligned fibrous porous media. Compos. Part A 27, 25–34 (1996)CrossRefGoogle Scholar
  28. 28.
    Seta, T.: Lattice Boltzmann method for fluid flows in anisotropic porous media with Brinkman equation. J. Fluid Sci. Technol. 4, 116–127 (2009)CrossRefGoogle Scholar
  29. 29.
    Sone, Y.: Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers. In: Gatignol, R., Soubbaramayer, J.B. (eds.) Advances in Kinetic Theory and Continuum Mechanics, pp. 19–31. Springer, Berlin (1991)CrossRefGoogle Scholar
  30. 30.
    Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002)CrossRefzbMATHGoogle Scholar
  31. 31.
    Sone, Y., Aoki, K., Takata, S., Sugimoto, H., Bobylev, A.V.: Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: examination by asymptotic analysis and numerical computation of the Boltzmann equation. Phys. Fluids 8, 628–638 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Spaid, M.A.A., Phelan Jr, F.R.: Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys. Fluids 9, 2468–2474 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  34. 34.
    Thorne, D.T., Sukop, M.C.: Lattice Boltzmann model for the Elder problem. In: Computational Methods in Water Resources vol. 2. Proceedings of the XVth International Conference on Computational Methods in Water Resources, Chapel Hill, NC, 13–17 June 2004, pp. 1549–1557. Elsevier, Amsterdam (2004)Google Scholar
  35. 35.
    Walsh, S.D.C., Burwinkle, H., Saar, M.O.: A new partial-bounceback lattice-Boltzmann method for fluid flow through heterogeneous media. Comput. Geosci. 35, 1186–1193 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Yoshida, H., Nagaoka, M.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229, 7774–7795 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Zhu, J., Ma, J.: An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media. Adv. Water Resour. 56, 61–76 (2013)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan
  2. 2.Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto UniversityKyotoJapan

Personalised recommendations