Journal of Statistical Physics

, Volume 154, Issue 6, pp 1508–1515 | Cite as

Space Dependent Mean Field Approximation Modelling

  • M. R. DudekEmail author
  • J. N. Grima
  • R. Cauchi
  • C. Zerafa
  • R. Gatt
  • B. Zapotoczny


It is shown that the self-consistency condition which is the basic equation for calculating the mean-field order parameter of any mean-field model Hamiltonian can be replaced by the standard Metropolis Monte Carlo scheme. The advantage of this method is its ease of implementation for both the homogeneous mean-field order parameter and the heterogeneous one. To be specific, the mean-field version of the Ising model spin system is discussed in detail and the resulting magnetization is the same as in the case of solving the respective mean-field self-consistency equation. In addition, it is shown that if a high temperature phase of such system is quenched below critical temperature then the mean field experienced by spins develops into a network of domains in analogous way as it happens with the spins in the case of the exact many-body Hamiltonian system and the coarsening processes start to take place. To show that the introduced Metropolis Monte Carlo method works also in case of the continuous variables the order parameter for the Maier-Saupe model for nematic liquid crystals has been calculated.


Mean field approximation Magnetic domains Coarsening  Monte Carlo method 



We thank professor Dietrich Stauffer for his comments on the mean-field Metropolis Monte Carlo algorithm as well as his suggestions concerning the paper. C. Zerafa and R. Cauchi acknowledge the support of the Strategic Educational Pathways Scholarship Scheme (Malta). These STEPS scholarships are part-financed by the European Union European Social Fund. B. Zapotoczny thanks for the PhD grant under Sub-Action 8.2.2 Regional Innovation Strategies, Activity 8.2 Know-How Transfer, Priority VIII Regional Business Personnel of the Human Capital Operational Programme, co-funded from the EU resources within the European Social Fund as well as the state budget and the Lubuskie Voivodship.


  1. 1.
    Weiss, P.: L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. 6, 661 (1907)zbMATHGoogle Scholar
  2. 2.
    Kadanoff, L.P.: More is the same; phase transitions and mean field theories. J. Stat. Phys. 137, 777 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Landau, L.D.: Phys. Z. Sow. 11, 26545 (1937). English Translation: Collected Papers of Landau, L.D., ter Haar, D. (eds.) 193–215. Pergamon Press, Oxford (1965).Google Scholar
  4. 4.
    Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York (1971)Google Scholar
  5. 5.
    Ginzburg, V.L., Landau, L.D., Eksp, Zh.: Teor. Fiz. 20, 1064 (1950)Google Scholar
  6. 6.
    Petschek, R., Metiu, H.: A computer simulation of the time-dependent Ginzburg-Landau model for spinodal decomposition. J. Chem. Phys. 79, 3443 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    Bak, P., von Boehm, J.: Ising model with solitons, phasons, and “the devil’s staircase”. Phys. Rev. B. 21, 5297 (1980)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Opper, M., Saad, D.: Advanced Mean Field Methods, Theory and Practice. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  9. 9.
    Carbonetto, P., de Freitas, N. :Conditional Mean Field in Advances in Neural Information Processing Systems 19 (eds.) Scholkope, B., Platt, J., Hofman, T., 201–209. Massachusetts Institute of Technology, Cambridge (2007).Google Scholar
  10. 10.
    Binder, K., Heermann, D.W.: Monte Carlo Simulation in Statistical Physics. An Introduction. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Netz, R.R., Berker, A.N.: Monte Carlo mean-field theory and frustrated systems in two and three dimensions. Phys. Rev. Lett. 66, 377 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Maier, W., Saupe, A.: Eine einfache molekulare theorie des nematischen kristallinflssigen Zustandes. Z. Naturforsch. Teil A 13, 564 (1958)ADSGoogle Scholar
  13. 13.
    Picken, S.J., van der Zwaag, S., Northolt, M.G.: Molecular and macroscopic orientational order in aramid solutions: a model to explain the influence of some spinning parameters on the modulus of aramid yarns. Polymer 33, 2998 (1991)CrossRefGoogle Scholar
  14. 14.
    Press, W.H., Teukolsky, S.A., Wetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing, pp. 302–304. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  15. 15.
    Bray, A.J.: Theory of phase-ordering kinetics. Adv. Phys. 51, 481 (2002)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Bray, A.J., Rutenberg, A.D.: Growth laws for phase ordering. Phys. Rev. E 49, R27 (1994)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35 (1961)ADSCrossRefGoogle Scholar
  18. 18.
    Nosé, S.: A molecular dynamics method for simulations in canonical ensemble. Mol. Phys. 52, 255 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    Hoover, W.G.: Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. R. Dudek
    • 1
    Email author
  • J. N. Grima
    • 2
    • 3
  • R. Cauchi
    • 3
  • C. Zerafa
    • 3
  • R. Gatt
    • 3
  • B. Zapotoczny
    • 1
  1. 1.Institute of Physics, University of Zielona GóraZielona GóraPoland
  2. 2.Metamaterials Unit, Faculty of ScienceUniversity of MaltaMsida Malta
  3. 3.Department of Chemistry, Faculty of ScienceUniversity of MaltaMsida Malta

Personalised recommendations