Journal of Statistical Physics

, Volume 153, Issue 2, pp 177–210 | Cite as

Statistics of Charge Transport and Modified Time Ordering

  • V. Beaud
  • G. M. Graf
  • A. V. Lebedev
  • G. B. Lesovik
Article

Abstract

The statistics of charge transport across a tunnel junction with energy-dependent scattering is investigated. A model with quadratic dispersion relation is discussed in general and, independently, in the two limiting cases of a large detector and of a linear dispersion relation. The measurement of charge takes place according to various protocols. It is found that, as a rule, the statistics is expressed by means of time-ordered current correlators. However the ordering prescription differs from the usual ones (Dyson and Keldysh) by the Matthews modification. Nevertheless binomial statistics is confirmed in all cases.

Keywords

Time ordering Correlation functions Counting statistics Contact terms Transport theory 

References

  1. 1.
    Levitov, L.S., Lesovik, G.B.: Charge distribution in quantum shot noise. JETP 58(3), 230–235 (1993) Google Scholar
  2. 2.
    Beenakker, C.W.J., Schomerus, H.: Counting statistics of photons produced by electronic shot noise. Phys. Rev. Lett. 86, 700–703 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    Belzig, W., Nazarov, Yu.V.: Full counting statistics of electron transfer between superconductors. Phys. Rev. Lett. 87, 197006 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    Lesovik, G.B., Chtchelkatchev, N.M.: Quantum and classical binomial distributions for the charge transmitted through coherent conductor. JETP Lett. 77(7), 393–396 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    Salo, J., Hekking, F.W.J., Pekola, J.P.: Frequency-dependent current correlation functions from scattering theory. Phys. Rev. B 74, 125427 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    Levitov, L.S., Lesovik, G.B.: Charge-transport statistics in quantum conductors. JETP 55(9), 555–559 (1992) Google Scholar
  7. 7.
    Lesovik, G.B., Sadovskyy, I.A.: Scattering matrix approach to the description of quantum electron transport. Phys. Usp. 54, 1007–10059 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    Bachmann, S., Graf, G.M., Lesovik, G.B.: Time ordering and counting statistics. J. Stat. Phys. 138, 333–350 (2010) MathSciNetADSCrossRefMATHGoogle Scholar
  9. 9.
    Levitov, L.S., Lee, H.W., Lesovik, G.B.: Electron counting statistics and coherent states of electric current. J. Math. Phys. 37(10), 4845–4866 (1996) MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    Kindermann, M., Nazarov, Y.V.: Full counting statistics of a general quantum mechanical variable. Eur. Phys. J. B 35, 413–420 (2003) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Matthews, P.T.: The application of Dyson’s method to meson interactions. Phys. Rev. 76(5), 684–685 (1949) MathSciNetADSCrossRefMATHGoogle Scholar
  12. 12.
    Levitov, L.S., Lesovik, G.B.: Quantum measurement in electric circuit. Preprint (1994). arXiv:cond-mat/9401004
  13. 13.
    Bohr, N.: On the notions of causality and complementarity. Dialectica 2(3–4), 312–319 (1948) CrossRefMATHGoogle Scholar
  14. 14.
    Nazarov, Yu.V. (ed.): Quantum Noise in Mesoscopic Physics. Nato Science Series, vol. II. Kluwer Academic, Dordrecht (2003) Google Scholar
  15. 15.
    Musykanskii, B.A., Adamov, Y.: Scattering approach to counting statistics in quantum pumps. Phys. Rev. B 68(15), 155304–155313 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    Shelankov, A., Rammer, J.: Charge transfer counting statistics revisited. Europhys. Lett. 63, 485–491 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    Lesovik, G.B.: Excess quantum noise in 2D ballistic point contacts. JETP Lett. 49(9), 592–594 (1989) ADSGoogle Scholar
  18. 18.
    Ng, T.K.: Nonlinear transport in mesoscopic systems. Phys. Rev. Lett. 68, 1018–1021 (1992) ADSCrossRefGoogle Scholar
  19. 19.
    Blanter, Ya.M., Büttiker, M.: Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    Lundberg, L.E.: Quasi-free “Second Quantization”. Commun. Math. Phys. 50, 103–112 (1976) MathSciNetADSCrossRefMATHGoogle Scholar
  21. 21.
    Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. Beaud
    • 1
  • G. M. Graf
    • 1
  • A. V. Lebedev
    • 1
  • G. B. Lesovik
    • 2
  1. 1.Theoretische PhysikETH ZurichZurichSwitzerland
  2. 2.L.D. Landau Institute for Theoretical Physics RASMoscowRussia

Personalised recommendations