Journal of Statistical Physics

, Volume 152, Issue 4, pp 787–798 | Cite as

The Role of Caretakers in Disease Dynamics

  • Charleston Noble
  • James P. Bagrow
  • Dirk Brockmann
Article

Abstract

One of the key challenges in modeling the dynamics of contagion phenomena is to understand how the structure of social interactions shapes the time course of a disease. Complex network theory has provided significant advances in this context. However, awareness of an epidemic in a population typically yields behavioral changes that correspond to changes in the network structure on which the disease evolves. This feedback mechanism has not been investigated in depth. For example, one would intuitively expect susceptible individuals to avoid other infecteds. However, doctors treating patients or parents tending sick children may also increase the amount of contact made with an infecteds, in an effort to speed up recovery but also exposing themselves to higher risks of infection. We study the role of these caretaker links in an adaptive network models where individuals react to a disease by increasing or decreasing the amount of contact they make with infected individuals.

We find that, for both homogeneous networks and networks possessing large topological variability, disease prevalence is decreased for low concentrations of caretakers whereas a high prevalence emerges if caretaker concentration passes a well defined critical value.

Keywords

Complex networks Adaptive networks Social networks Epidemics Disease dynamics 

References

  1. 1.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002) ADSCrossRefMATHGoogle Scholar
  2. 2.
    Allen, L.J., Burgin, A.M.: Comparison of deterministic and stochastic sis and sir models in discrete time. Math. Biosci. 163(1), 1–33 (2000) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anderson, R.M., May, R.M.: Population biology of infectious-diseases 1. Nature 280(5721), 361–367 (1979) ADSCrossRefGoogle Scholar
  4. 4.
    Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control. Oxford Univ. Press, New York (1992) Google Scholar
  5. 5.
    Bajardi, P., Poletto, C., Ramasco, J.J., Tizzoni, M., Colizza, V., Vespignani, A.: Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic. PLOS One 6(1) (2011) Google Scholar
  6. 6.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89, 054,101 (2002) CrossRefGoogle Scholar
  8. 8.
    Bornholdt, S., Rohlf, T.: Topological evolution of dynamical networks: global criticality from local dynamics. Phys. Rev. Lett. 84, 6114–6117 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    Brockmann, D.: Reviews of Nonlinear Dynamics and Complexity. Wiley-VCH, Weinheim (2010). SCHUSTER:REVIEWS 2 O-BK Google Scholar
  10. 10.
    Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3(4), 276–282 (2007) CrossRefGoogle Scholar
  11. 11.
    Eguíluz, V.M., Klemm, K.: Epidemic threshold in structured scale-free networks. Phys. Rev. Lett. 89, 108,701 (2002) CrossRefGoogle Scholar
  12. 12.
    Erdos, P., Renyi, A.: On the evolution of random graphs. Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 5, 17–61 (1960) MathSciNetGoogle Scholar
  13. 13.
    Ferguson, N., Cummings, D., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209–214 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    Ferguson, N.M., Cummings, D.A.T., Fraser, C., Cajka, J.C., Cooley, P.C., Burke, D.S.: Strategies for mitigating an influenza pandemic. Nature 442(7101), 448–452 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5(20), 259–271 (2008) CrossRefGoogle Scholar
  16. 16.
    Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    Holme, P., Ghoshal, G.: Dynamics of networking agents competing for high centrality and low degree. Phys. Rev. Lett. 96, 098701 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 101(42), 15124–15129 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    Kuperman, M., Abramson, G.: Small world effect in an epidemiological model. Phys. Rev. Lett. 86, 2909–2912 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    Li, K., Fu, X., Small, M., Ma, Z.: Adaptive mechanism between dynamical synchronization and epidemic behavior on complex networks. Chaos 21, 03311 (2011) Google Scholar
  21. 21.
    Lloyd, A.L., May, R.M.: How viruses spread among computers and people. Science 292(5520), 1316–1317 (2001) CrossRefGoogle Scholar
  22. 22.
    Newman, M.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016,128 (2002) CrossRefGoogle Scholar
  23. 23.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003) MathSciNetADSCrossRefMATHGoogle Scholar
  24. 24.
    Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63, 066117 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65, 036104 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    Van den Broeck, W., Gioannini, C., Goncalves, B., Quaggiotto, M., Colizza, V., Vespignani, A.: The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect. Dis. 11, 37 (2011) CrossRefGoogle Scholar
  28. 28.
    Xulvi-Brunet, R., Sokolov, I.M.: Reshuffling scale-free networks: from random to assortative. Phys. Rev. E 70, 066102 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Charleston Noble
    • 1
  • James P. Bagrow
    • 2
  • Dirk Brockmann
    • 2
  1. 1.Northwestern UniversityEvanstonUSA
  2. 2.Engineering Sciences and Applied Mathematics, Northwestern Institute on Complex SystemsNorthwestern UniversityEvanstonUSA

Personalised recommendations