Journal of Statistical Physics

, Volume 152, Issue 3, pp 534–540 | Cite as

Emergence of the Sierpinski Gasket in Coin-Dividing Problems

Article

Abstract

The present paper proposes a generation mechanism of a fractal pattern related to a coin system. The problem is formulated in terms of a situation of dividing coins among people. Remarkably, a fractal pattern like the Sierpinski gasket is obtained, by marking all the possible division of coins as a point set. The mechanism for this fractal structure is reduced to nested relations, owing to a hierarchical property of coin denominations. Relevance to dynamical systems is also discussed.

Keywords

Fractal Coin dividing Sierpinski gasket Dynamical system Chaos game 

References

  1. 1.
    Mandelbrot, B.: The Fractal Geometry of Nature. WH Freeman, San Francisco (1982) MATHGoogle Scholar
  2. 2.
    Richardella, A., Roushan, P., Mack, S., Zhou, B., Huse, D.A., Awschalom, D.D., Yazdani, A.: Science 327, 665 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    Matsushita, M., Fujikawa, H.: Physica A 168, 498 (1990) ADSCrossRefGoogle Scholar
  4. 4.
    Martinez, V.J., Saar, E.: Statistics of the Galaxy Distribution. CRC, Boca Raton (2001) CrossRefGoogle Scholar
  5. 5.
    Kobayashi, N., Yamazaki, Y., Kuninaka, H., Katori, M., Matsushita, M., Matsushita, S., Chiang, L.-Y.: J. Phys. Soc. Jpn. 80, 074003 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    Feder, J.: Fractals. Plenum, New York (1988) MATHGoogle Scholar
  7. 7.
    Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (1996) MATHGoogle Scholar
  8. 8.
    Sornette, D.: Critical Phenomena in Natural Science. Springer, Berlin (2004) Google Scholar
  9. 9.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002) MATHGoogle Scholar
  10. 10.
    Yamamoto, K., Yamazaki, Y.: Chaos Solitons Fractals 45, 1058 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    Matsushita, M.: J. Phys. Soc. Jpn. 54, 857 (1985) ADSCrossRefGoogle Scholar
  12. 12.
    Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer, New York (1992) CrossRefGoogle Scholar
  13. 13.
    Jeffrey, H.J.: Nucleic Acids Res. 18, 2163 (1990) CrossRefGoogle Scholar
  14. 14.
    Yu, Z.-G., Anh, V., Lau, K.-S.: J. Theor. Biol. 226, 341 (2004) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Matsushita, R., Gleria, I., Figueiredo, A., Da Silva, S.: Physica A 378, 427 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. A K Peters, Boston (1993) MATHGoogle Scholar
  17. 17.
    Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, New York (2010) MATHCrossRefGoogle Scholar
  18. 18.
    Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1993) MATHGoogle Scholar
  19. 19.
    Ball, P.: Branches: Nature’s Patterns: A Tapestry in Three Parts. Oxford University Press, Oxford (2009) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and EngineeringChuo UniversityTokyoJapan

Personalised recommendations