Advertisement

Journal of Statistical Physics

, Volume 152, Issue 3, pp 519–533 | Cite as

The Influence of Network Properties on the Synchronization of Kuramoto Oscillators Quantified by a Bayesian Regression Analysis

  • Guilherme F. de Arruda
  • Thomas Kauê Dal’Maso Peron
  • Marinho Gomes de Andrade
  • Jorge Alberto Achcar
  • Francisco Aparecido Rodrigues
Article

Abstract

The influence of the network structure on the emergence of collective dynamical behavior is an important topic of research that has not been fully understood yet. In the current work, it is shown how statistical regression analysis can be considered to address this issue. The regression model proposed suggests that the average shortest path length is the network property most influencing the degree of synchronization of Kuramoto oscillators. Moreover, this model revealed to be very accurate, being the predicted and measured values of synchronization highly correlated. Therefore, the regression modeling allows predicting the values of the dynamic variable in terms of network structure.

Keywords

Complex networks Synchronization Regression analysis 

Notes

Acknowledgements

Francisco A. Rodrigues would like to acknowledge CNPq (305940/2010-4) and FAPESP (2010/19440-2) for the financial support given to this research. Jorge A. Achcar would like to acknowledge CNPq (302142/2002-9). Thomas and Guilherme thank Fapesp for sponsorship.

References

  1. 1.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009) Google Scholar
  2. 2.
    Amaral, L.A.N., Ottino, J.M.: Complex networks: augmenting the framework for the study of complex systems. Eur. Phys. J. B 38(2), 147–162 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010) zbMATHGoogle Scholar
  4. 4.
    da Costa, L.F., Oliveira, O. Jr, Travieso, G., Rodrigues, F.A., Boas, P.R.V., Antiqueira, L., Viana, M.P., Rocha, L.E.C.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    Barabási, A.: The network takeover. Nat. Phys. 8(1), 14–16 (2011) CrossRefGoogle Scholar
  6. 6.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: ACM SIGCOMM Computer Communication Review, vol. 29, pp. 251–262. ACM, New York (1999) Google Scholar
  7. 7.
    Barabási, A., Oltvai, Z.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004) CrossRefGoogle Scholar
  8. 8.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009) CrossRefGoogle Scholar
  9. 9.
    Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Albert, R., Jeong, H., Barabási, A.-L.: The diameter of the world wide web. Nature 401, 130–131 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Barahona, M., Pecora, L.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 54101 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    Nishikawa, T., Motter, A., Lai, Y., Hoppensteadt, F.: Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett. 91(1), 14101 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    McGraw, P., Menzinger, M.: Clustering and the synchronization of oscillator networks. Phys. Rev. B 72(1), 015101 (2005) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Motter, A., Zhou, C., Kurths, J.: Enhancing complex-network synchronization. Europhys. Lett. 69, 334 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    Erdős, P., Rényi, A.: On random graphs. Publ. Math. 6, 290–297 (1959) Google Scholar
  19. 19.
    Barrat, A., Barthlemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008) zbMATHCrossRefGoogle Scholar
  20. 20.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Phys. Rev. Lett. 85(21), 4629–4632 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    Fox, J.: Applied Regression Analysis, Linear Models, and Related Methods. Sage, Thousand Oaks (1997) Google Scholar
  24. 24.
    Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley Series in Probability and Statistics Google Scholar
  25. 25.
    Rawlings, J.O., Pantula, S.G., Dickey, D.A.: Applied Regression Analysis: A Research Tool. Springer, Berlin (1998) zbMATHCrossRefGoogle Scholar
  26. 26.
    Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression Analysis. Wiley, New York (2007) Google Scholar
  27. 27.
    Ferrari, S., Cribari-Neto, F.: Beta regression for modelling rates and proportions. J. Appl. Stat. 31(7), 799–815 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Kieschnick, R., McCullough, B.: Regression analysis of variates observed on (0, 1): percentages, proportions and fractions. Stat. Model. 3(3), 193–213 (2003) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Box, G., Cox, D.: An analysis of transformations. J. R. Stat. Soc., Ser. B, Methodol., 211–252 (1964) Google Scholar
  30. 30.
    Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman & Hall, New York (1986) zbMATHCrossRefGoogle Scholar
  31. 31.
    Iyengar, M., Dey, D.: Box–cox transformation in Bayesian analysis of compositional data. Environmetrics 9, 657–671 (1998) CrossRefGoogle Scholar
  32. 32.
    von Toussaint, U.: Bayesian inference in physics. Rev. Mod. Phys. 83(3), 943 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    Dose, V.: Bayesian inference in physics: case studies. Rep. Prog. Phys. 66(9), 1421 (2003) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Bernardo, J.M., Smith, A.F.: Bayesian Theory, vol. 405. Wiley, New York (2009) Google Scholar
  35. 35.
    Guimerà, R., Sales-Pardo, M.: Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl. Acad. Sci. USA 106(52), 22073–22078 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    Paulino, C., Turkman, M., Murteira, B.: Estatística bayesiana. Fundação Calouste Gulbenkian, Lisboa (2003) Google Scholar
  38. 38.
    Gelfand, A., Smith, A.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc., 398–409 (1990) Google Scholar
  39. 39.
    Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat., 327–335 (1995) Google Scholar
  40. 40.
    Spiegelhalter, D., Thomas, A., Best, N., Lunn, D.: Winbugs Version 1.4 User Manual (2003) Google Scholar
  41. 41.
    Trotta, R.: Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49(2), 71–104 (2008) ADSCrossRefGoogle Scholar
  42. 42.
    Gregory, P.: Bayesian Logical Data Analysis for the Physical Sciences, vol. 10. Cambridge University Press, Cambridge (2005) zbMATHCrossRefGoogle Scholar
  43. 43.
    Sivia, D., Skilling, J.: Data analysis: a Bayesian tutorial Google Scholar
  44. 44.
    Costa, L., Rodrigues, F., Travieso, G., Boas, P.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007) ADSCrossRefGoogle Scholar
  45. 45.
    Gamerman, D., Lopes, H.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall/CRC, New York (2006) Google Scholar
  46. 46.
    Gómez-Gardenes, J., Moreno, Y., Arenas, A.: Paths to synchronization on complex networks. Phys. Rev. Lett. 98(3), 34101 (2007) CrossRefGoogle Scholar
  47. 47.
    Arenas, A., Diaz-Guilera, A., Pérez-Vicente, C.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96(11), 114102 (2006) ADSCrossRefGoogle Scholar
  48. 48.
    Rosvall, M., Trusina, A., Minnhagen, P., Sneppen, K.: Networks and cities: an information perspective. Phys. Rev. Lett. 94(2), 28701 (2005) ADSCrossRefGoogle Scholar
  49. 49.
    Ichinomiya, T.: Frequency synchronization in random oscillator network. Phys. Rev. B 70, 026116 (2004) ADSCrossRefGoogle Scholar
  50. 50.
    Xulvi-Brunet, R., Sokolov, I.: Reshuffling scale-free networks: from random to assortative. Phys. Rev. B 70(6), 066102 (2004) CrossRefGoogle Scholar
  51. 51.
    Clauset, A., Moore, C., Newman, M.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008) ADSCrossRefGoogle Scholar
  52. 52.
    Solé, R.V., Valverde, S.: Information theory of complex networks: on evolution and architectural constraints. In: Lecture Notes in Physics, vol. 650, pp. 189–207 (2004) Google Scholar
  53. 53.
    Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. B 67(2), 026126 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guilherme F. de Arruda
    • 1
  • Thomas Kauê Dal’Maso Peron
    • 2
  • Marinho Gomes de Andrade
    • 1
  • Jorge Alberto Achcar
    • 3
  • Francisco Aparecido Rodrigues
    • 1
  1. 1.Departamento de Matemática Aplicada e Estatística, Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  2. 2.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  3. 3.Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloSão PauloBrazil

Personalised recommendations