Journal of Statistical Physics

, Volume 152, Issue 1, pp 1–14 | Cite as

Entropy and the Shannon-McMillan-Breiman Theorem for Beta Random Matrix Ensembles

  • Alexander Bufetov
  • Sevak Mkrtchyan
  • Maria Shcherbina
  • Alexander SoshnikovEmail author


We show that beta ensembles in Random Matrix Theory with generic real analytic potential have the asymptotic equipartition property. In addition, we prove a Central Limit Theorem for the density of the eigenvalues of these ensembles.


Random matrices Beta ensembles Entropy 



We are grateful to Alexei Borodin and Kurt Johansson for useful discussions, and to Alain Rouault for bringing our attention to the paper [28] by I. Popescu.

A. Bufetov has been supported in part by an Alfred P. Sloan Research Fellowship, a Dynasty Foundation Fellowship, as well as an IUM-Simons Fellowship, by the Grant MK-6734.2012.1 of the President of the Russian Federation, by the Programme “Dynamical systems and mathematical control theory” of the Presidium of the Russian Academy of Sciences, by the RFBR-CNRS grant 10-01-93115-NTsNIL and by the RFBR grant 11-01-00654.

M. Shcherbina has been supported in part by the project “Ukrainian branch of the French-Russian Poncelet laboratory”—“Probability problems on groups and spectral theory”.

A. Soshnikov has been supported in part by the NSF grant DMS-1007558.


  1. 1.
    Albeverio, S., Pastur, L., Shcherbina, M.: On the 1/n expansion for some unitary invariant ensembles of random matrices. Commun. Math. Phys. 224, 271–305 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009) CrossRefGoogle Scholar
  3. 3.
    Baker, T.H., Forrester, P.J.: Finite-N fluctuation formulas for random matrices. J. Stat. Phys. 88(5–6), 1371–1386 (1997) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Barnes, E.W.: The theory of the G-function. Quart. J. Pure Appl. Math. 31, 264–313 (1900) zbMATHGoogle Scholar
  5. 5.
    Ben Arous, G., Guionnet, A.: Large deviations for Wigner’s law and Voiculescu non-commutative entropy. Probab. Theory Relat. Fields 108, 517–542 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Borodin, A., Serfaty, S.: Renormalized energy concentration in random matrices. arXiv:1201.2853v2 [math.PR]
  7. 7.
    Borot, G., Guionnet, A.: Asymptotic expansion of β-matrix models in the one-cut regime. arXiv:1107.1167
  8. 8.
    Bourgade, P., Erdös, L., Yau, H.T.: Universality of general β-ensembles. arXiv:1104.2272 [math.PR]
  9. 9.
    Bourgade, P., Erdös, L., Yau, H.T.: Bulk universality of general β-ensembles with non-convex potential. J. Math. Phys. 53(9), 095221 (19 pp.) (2012) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Bufetov, A.: On the Vershik–Kerov conjecture concerning the Shannon–McMillan–Breiman theorem for the Plancherel family of measures on the space of Young diagrams. Geom. Funct. Anal. 22, 938–975 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Am. Math. Soc., Providence (2000) zbMATHGoogle Scholar
  12. 12.
    Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Dumitriu, I., Edelman, A.: Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models. J. Math. Phys. 47(6), 063302 (36 pp.) (2006) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Dumitriu, I., Paquette, E.: Global fluctuations for linear statistics of β-Jacobi ensembles. arXiv:1203.6103 [math.PR]
  15. 15.
    Dyson, F.J.: Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3, 140–156 (1962) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Dyson, F.J.: Statistical theory of the energy levels of complex systems. III. J. Math. Phys. 3, 166–175 (1962) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Erdös, L., Yau, H.T.: Gap universality of generalized Wigner and beta-ensembles. arXiv:1211.3786 [math.PR]
  18. 18.
    Forrester, P.J.: Log-gases and Random Matrices. Princeton University Press, Princeton (2010) zbMATHGoogle Scholar
  19. 19.
    Forrester, P.J.: Large deviation eigenvalue density for the soft edge Laguerre and Jacobi β-ensembles. J. Phys. A 45(14), 145201 (15 pp.) (2012) MathSciNetADSGoogle Scholar
  20. 20.
    Forrester, P.J.: Spectral density asymptotics for Gaussian and Laguerre β-ensembles in the exponentially small region. J. Phys. A 45(7), 075206 (17 pp.) (2012) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Johansson, K.: On Szegö’s asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci. Math. 112, 257–304 (1988) MathSciNetzbMATHGoogle Scholar
  22. 22.
    Johansson, K.: On fluctuations of eigenvalues of random hermitian matrices. Duke Math. J. 91(1), 151–204 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Killip, R., Nenciu, I.: Matrix models for circular ensembles. Int. Math. Res. Not. 50, 2665–2701 (2004) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mehta, M.L.: Random Matrices. Elsevier/Academic Press, San Diego (2004) zbMATHGoogle Scholar
  25. 25.
    Mkrtchyan, S.: Asymptotics of the maximal and the typical dimensions of isotypic components of tensor representations of the symmetric group. Eur. J. Comb. 33(7), 1631–1652 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Mkrtchyan, S.: Entropy of Schur-Weyl measures. Ann. Inst. Henri Poincaré, B, to appear. arXiv:1107.1541v1 [math.RT]
  27. 27.
    Pastur, L.: Limiting laws of linear eigenvalue statistics for Hermitian matrix models. J. Math. Phys. 47(10), 103303 (22 pp.) (2006) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Popescu, I.: Talagrand inequality for the semicircular law and energy of the eigenvalues of beta ensembles. Math. Res. Lett. 14(6), 1023–1032 (2007) MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ramírez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Am. Math. Soc. 24(4), 919–944 (2011) zbMATHCrossRefGoogle Scholar
  30. 30.
    Selberg, A.: Remarks on a multiple integral. Norsk Mat. Tidsskr. 26, 71–78 (1944) MathSciNetzbMATHGoogle Scholar
  31. 31.
    Shcherbina, M.: Orthogonal and symplectic matrix models: universality and other properties. Commun. Math. Phys. 307(3), 761–790 (2011) MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Shcherbina, M.: Fluctuations of linear eigenvalue statistics of β matrix models in the multi-cut regime. arXiv:1205.7062 [math-ph]
  33. 33.
    Sosoe, P., Wong, P.: Local semicircle law in the bulk for Gaussian β-ensemble. arXiv:1112.2016 [math.PR]
  34. 34.
    Valkó, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177(3), 463–508 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    Vershik, A.M., Kerov, S.V.: Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group. Funkc. Anal. Prilozh. 19(1), 25–36 (1985) MathSciNetGoogle Scholar
  36. 36.
    Wong, P.: Local semicircle law at the spectral edge for Gaussian β-ensembles. Commun. Math. Phys. 312, 251–263 (2012) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alexander Bufetov
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Sevak Mkrtchyan
    • 7
  • Maria Shcherbina
    • 8
  • Alexander Soshnikov
    • 9
    Email author
  1. 1.Laboratoire d’Analyse, Topologie, ProbabilitésCNRSMarseilleFrance
  2. 2.The Steklov Institute of MathematicsMoscowRussia
  3. 3.The Institute for Information Transmission ProblemsMoscowRussia
  4. 4.National Research University Higher School of EconomicsMoscowRussia
  5. 5.The Independent University of MoscowMoscowRussia
  6. 6.Rice UniversityHoustonUSA
  7. 7.Carnegie Mellon UniversityPittsburghUSA
  8. 8.Institute for Low Temperature Physics Ukr. Ac. Sci.KharkovUkraine
  9. 9.University of California at DavisDavisUSA

Personalised recommendations