Journal of Statistical Physics

, Volume 152, Issue 1, pp 93–111 | Cite as

Microscopic Structure of Shocks and Antishocks in the ASEP Conditioned on Low Current

Article

Abstract

We study the time evolution of the ASEP on a one-dimensional torus with L sites, conditioned on an atypically low current up to a finite time t. For a certain one-parameter family of initial measures with a shock we prove that the shock position performs a biased random walk on the torus and that the measure seen from the shock position remains invariant. We compute explicitly the transition rates of the random walk. For the large scale behavior this result suggests that there is an atypically low current such that the optimal density profile that realizes this current is a hyperbolic tangent with a traveling shock discontinuity. For an atypically low local current across a single bond of the torus we prove that a product measure with a shock at an arbitrary position and an antishock at the conditioned bond remains a convex combination of such measures at all times which implies that the antishock remains microscopically stable under the locally conditioned dynamics. We compute the coefficients of the convex combinations.

Keywords

Asymmetric symmetric exclusion process Large deviations Shocks Antishocks 

References

  1. 1.
    Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999) MATHCrossRefGoogle Scholar
  2. 2.
    Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 1–251. Academic Press, London (2001) CrossRefGoogle Scholar
  3. 3.
    Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107, 599–634 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Bertini, L., De Sole, A., Gabrielli, D., Jona Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 107, 635–675 (2002) ADSMATHCrossRefGoogle Scholar
  5. 5.
    Lebowitz, J.L., Spohn, H.: A Gallavotti–Cohen–type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Harris, R.J., Schütz, G.M.: Fluctuation theorems for stochastic dynamics. J. Stat. Mech. P07020 (2007) Google Scholar
  7. 7.
    Derrida, B., Lebowitz, J.L.: Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett. 80(2), 209–213 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Bodineau, T., Derrida, B.: Distribution of current in non-equilibrium diffusive systems and phase transitions. Phys. Rev. E 72, 066110 (2005) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Simon, D.: Bethe ansatz for the weakly asymmetric simple exclusion process and phase transition in the current distribution. J. Stat. Phys. 142, 931–951 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Popkov, V., Simon, D., Schütz, G.M.: ASEP on a ring conditioned on enhanced flux. J. Stat. Mech. P10007 (2010) Google Scholar
  11. 11.
    Popkov, V., Schütz, G.M.: Transition probabilities and dynamic structure factor in the ASEP conditioned on strong flux. J. Stat. Phys. 142(3), 627–639 (2011) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Lecomte, V., Garrahan, J.P., Van Wijland, F.: Inactive dynamical phase of a symmetric exclusion process on a ring. J. Phys. A 45, 175001 (2012) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Belitsky, V., Schütz, G.M.: Diffusion and coalescence of shocks in the partially asymmetric exclusion process. Electron. J. Probab. 7(11), 1–21 (2002) MathSciNetGoogle Scholar
  14. 14.
    Imamura, T., Sasamoto, T.: Current moments of 1D ASEP by duality. J. Stat. Phys. 142(5), 919–930 (2011) MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Schütz, G.M.: Duality relations for asymmetric exclusion process. J. Stat. Phys. 86(5/6), 1265–1287 (1997) ADSMATHCrossRefGoogle Scholar
  16. 16.
    Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135, 25–55 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for Q-TASEP and ASEP. arXiv:1207.5035 [math.PR] (2012)
  18. 18.
    Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales, vol. 1. Foundations. Wiley, New York (1994) MATHGoogle Scholar
  19. 19.
    Simon, D.: Construction of a coordinate Bethe ansatz for the asymmetric simple exclusion process with open boundaries. J. Stat. Mech. P07017 (2009) Google Scholar
  20. 20.
    Lloyd, P., Sudbury, A., Donnelly, P.: Quantum operators in classical probability theory: I. “Quantum spin” techniques and the exclusion model of diffusion. Stoch. Process. Appl. 61(2), 205–221 (1996) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Feller, W.: Introduction to the Probability Theory and Its Applications, vol. I, 3rd edn. Wiley, New York (1968) Google Scholar
  22. 22.
    Pasquier, V., Saleur, H.: Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys. B 330, 523–556 (1990) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil
  2. 2.Institute of Complex Systems IIForschungszentrum Jülich GmbHJülichGermany
  3. 3.Interdisziplinäres Zentrum für komplexe SystemeUniversität BonnBonnGermany

Personalised recommendations