Journal of Statistical Physics

, Volume 152, Issue 1, pp 37–53 | Cite as

A Curie-Weiss Model with Dissipation



We consider stochastic dynamics for a spin system with mean field interaction, in which the interaction potential is subject to noisy and dissipative stochastic evolution. We show that, in the thermodynamic limit and at sufficiently low temperature, the magnetization of the system has a time periodic behavior, despite of the fact that no periodic force is applied.


Mean field models Random potential Noise-induced periodicity 



We are grateful to G. Giacomin for deep comments and suggestions.

The authors acknowledge the financial support of the Research Grant of the Ministero dell’Istruzione, dell’Università e della Ricerca: PRIN 2009, Complex Stochastic Models and their Applications in Physics and Social Sciences.


  1. 1.
    Budhiraja, A., Del Moral, P., Rubenthaler, S.: Discrete time Markovian agents interacting through a potential. ESAIM, Probab. Stat. (2013). doi:10.1051/ps/2012014 MATHGoogle Scholar
  2. 2.
    Carletti, T., Villari, G.: A note on existence and uniqueness of limit cycles for Liénard systems. J. Math. Anal. Appl. 307(2), 763–773 (2005). doi:10.1016/j.jmaa.2005.01.054 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Dai Pra, P., Runggaldier, W.J., Sartori, E., Tolotti, M.: Large portfolio losses: a dynamic contagion model. Ann. Appl. Probab. 19(1), 347–394 (2009). doi:10.1214/08-AAP544 MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961) ADSCrossRefGoogle Scholar
  5. 5.
    Garcia-Ojalvo, J., Elowitz, M., Strogatz, S.: Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA 101(30), 10955–10960 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Giacomin, G., Pakdaman, K., Pellegrin, X., Poquet, C.: Transitions in Active Rotator Systems: Invariant Hyperbolic Manifold Approach. SIAM J. Math. Anal. 44(6), 4165–4194 (2012). doi:10.1137/110846452 MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Giesecke, K., Spiliopoulos, K., Sowers, R.: Default clustering in large portfolios: Typical events. Ann. Appl. Probab. 23(1), 348–385 (2013). doi:10.1214/12-AAP845. MATHCrossRefGoogle Scholar
  8. 8.
    Gottlieb, A.D.: Markov transitions and the propagation of chaos. In: ProQuest LLC, Ann Arbor, MI. Ph.D. Thesis, University of California, Berkeley (1998) Google Scholar
  9. 9.
    Graham, C.: McKean-Vlasov Itô-Skorohod equations, and nonlinear diffusions with discrete jump sets. Stoch. Process. Appl. 40(1), 69–82 (1992). doi:10.1016/0304-4149(92)90138-G MATHCrossRefGoogle Scholar
  10. 10.
    Kolokoltsov, V.: Nonlinear Markov Processes and Kinetic Equations vol. 182. Cambridge University Press, Cambridge (2010) MATHGoogle Scholar
  11. 11.
    Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    McMillen, D., Kopell, N., Hasty, J., Collins, J.: Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. 99(2), 679–684 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962) CrossRefGoogle Scholar
  14. 14.
    Pakdaman, K., Perthame, B., Salort, D.: Dynamics of a structured neuron population. Nonlinearity 23(1), 55–75 (2010). doi:10.1088/0951-7715/23/1/003 MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Pakdaman, K., Perthame, B., Salort, D.: 2011, Relaxation and self-sustained oscillations in the time elapsed neuron network model. arXiv:1109.3014
  16. 16.
    Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L., Hasty, J.: A sensing array of radically coupled genetic ‘biopixels’. Nature 481, 39–44 (2011). doi:10.1038/nature10722 ADSCrossRefGoogle Scholar
  17. 17.
    Sabatini, M., Villari, G.: Limit cycle uniqueness for a class of planar dynamical systems. Appl. Math. Lett. 19(11), 1180–1184 (2006). doi:10.1016/j.aml.2005.09.017 MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Schweitzer, F.: Collective Dynamics in the Natural and Social Sciences. Brownian Agents and Active Particles. Springer Series in Synergetics. Springer, Berlin (2003), with a foreword by J. Doyne Farmer Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di PadovaPaduaItaly

Personalised recommendations