Journal of Statistical Physics

, Volume 151, Issue 6, pp 1162–1174 | Cite as

Longitudinal Inverted Compressibility in Super-strained Metamaterials

  • Zachary G. Nicolaou
  • Adilson E. Motter


We develop a statistical physics theory for solid-solid phase transitions in which a metamaterial undergoes longitudinal contraction in response to increase in external tension. Such transitions, which are forbidden in thermodynamic equilibrium, have recently been shown to be possible during the decay of metastable, super-strained states. We present a first-principles model to predict these transitions and validate it using molecular dynamics simulations. Aside from its immediate mechanical implications, our theory points to a wealth of analogous inverted responses, such as inverted susceptibility or heat-capacity transitions, allowed when considering realistic scales.


Phase transitions Compressibility Materials Nonconvexities 



This work was supported by an NSF Graduate Research Fellowship and the NSF Grant No. DMS-1057128.


  1. 1.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part I, 3rd edn. Butterworth-Heinemann, Oxford (1980) Google Scholar
  2. 2.
    Salje, E.K.H.: Phase Transitions in Ferroelastic and Co-elastic Crystals. Cambridge University Press, New York (1990) Google Scholar
  3. 3.
    Schnurr, B., Gittes, F., MacKintosh, F.C.: Metastable intermediates in the condensation of semiflexible polymers. Phys. Rev. E 65, 061904 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    Nicolaou, Z.G., Motter, A.E.: Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608–613 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, Berlin (2001) CrossRefGoogle Scholar
  6. 6.
    Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. USA 107, 7230–7234 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Boechler, N., Theocharis, G., Daraio, C.: Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665–668 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    Sheinman, M., Broedersz, C.P., MacKintosh, F.C.: Nonlinear effective-medium theory of disordered spring networks. Phys. Rev. E 85, 021801 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    Broedersz, C.P., Storm, C., MacKintosh, F.C.: Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers. Phys. Rev. Lett. 101, 118103 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    Cohen, J.E., Horowitz, P.: Paradoxical behaviour of mechanical and electrical networks. Nature 352, 699–701 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    Abeyaratne, R., Knowles, J.K.: Evolution of Phase Transitions: A Continuum Theory. Cambridge University Press, New York (2006) CrossRefGoogle Scholar
  12. 12.
    Krapivsky, P.L., Redner, S., Ben Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, New York (2010) zbMATHCrossRefGoogle Scholar
  13. 13.
    Martyna, G.J., Klein, M.L., Tuckerman, M.: Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992) ADSCrossRefGoogle Scholar
  14. 14.
    Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980) ADSCrossRefGoogle Scholar
  15. 15.
    Binder, K.: Nucleation barriers, spinodals, and the Ginzburg criterion. Phys. Rev. A 29, 341–349 (1984) ADSCrossRefGoogle Scholar
  16. 16.
    Mishima, O., Stanley, H.E.: The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    Fang, N., et al.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    Falk, F.: Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall. 28, 1773–1780 (1980) CrossRefGoogle Scholar
  20. 20.
    Abeyaratne, R., Knowles, J.K.: A continuum model of a thermoelastic solid capable of undergoing phase transitions. J. Mech. Phys. Solids 41, 541–571 (1993) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Truskinovsky, L., Vainchtein, A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66, 533–553 (2006) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fraternali, F., Blesgen, T., Amendola, A., Daraio, C.: Multiscale mass-spring models of carbon nanotube foams. J. Mech. Phys. Solids 59, 89–102 (2011) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Physics and Astronomy and Northwestern Institute on Complex SystemsNorthwestern UniversityEvanstonUSA

Personalised recommendations