# Longitudinal Inverted Compressibility in Super-strained Metamaterials

- 337 Downloads
- 4 Citations

## Abstract

We develop a statistical physics theory for solid-solid phase transitions in which a metamaterial undergoes longitudinal contraction in response to increase in external tension. Such transitions, which are forbidden in thermodynamic equilibrium, have recently been shown to be possible during the decay of metastable, super-strained states. We present a first-principles model to predict these transitions and validate it using molecular dynamics simulations. Aside from its immediate mechanical implications, our theory points to a wealth of analogous inverted responses, such as inverted susceptibility or heat-capacity transitions, allowed when considering realistic scales.

## Keywords

Phase transitions Compressibility Materials Nonconvexities## Notes

### Acknowledgements

This work was supported by an NSF Graduate Research Fellowship and the NSF Grant No. DMS-1057128.

## References

- 1.Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part I, 3rd edn. Butterworth-Heinemann, Oxford (1980) Google Scholar
- 2.Salje, E.K.H.: Phase Transitions in Ferroelastic and Co-elastic Crystals. Cambridge University Press, New York (1990) Google Scholar
- 3.Schnurr, B., Gittes, F., MacKintosh, F.C.: Metastable intermediates in the condensation of semiflexible polymers. Phys. Rev. E
**65**, 061904 (2002) ADSCrossRefGoogle Scholar - 4.Nicolaou, Z.G., Motter, A.E.: Mechanical metamaterials with negative compressibility transitions. Nat. Mater.
**11**, 608–613 (2012) ADSCrossRefGoogle Scholar - 5.Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, Berlin (2001) CrossRefGoogle Scholar
- 6.Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. USA
**107**, 7230–7234 (2010) ADSCrossRefGoogle Scholar - 7.Boechler, N., Theocharis, G., Daraio, C.: Bifurcation-based acoustic switching and rectification. Nat. Mater.
**10**, 665–668 (2011) ADSCrossRefGoogle Scholar - 8.Sheinman, M., Broedersz, C.P., MacKintosh, F.C.: Nonlinear effective-medium theory of disordered spring networks. Phys. Rev. E
**85**, 021801 (2012) ADSCrossRefGoogle Scholar - 9.Broedersz, C.P., Storm, C., MacKintosh, F.C.: Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers. Phys. Rev. Lett.
**101**, 118103 (2008) ADSCrossRefGoogle Scholar - 10.Cohen, J.E., Horowitz, P.: Paradoxical behaviour of mechanical and electrical networks. Nature
**352**, 699–701 (1991) ADSCrossRefGoogle Scholar - 11.Abeyaratne, R., Knowles, J.K.: Evolution of Phase Transitions: A Continuum Theory. Cambridge University Press, New York (2006) CrossRefGoogle Scholar
- 12.Krapivsky, P.L., Redner, S., Ben Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, New York (2010) zbMATHCrossRefGoogle Scholar
- 13.Martyna, G.J., Klein, M.L., Tuckerman, M.: Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys.
**97**, 2635–2643 (1992) ADSCrossRefGoogle Scholar - 14.Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys.
**72**, 2384–2393 (1980) ADSCrossRefGoogle Scholar - 15.Binder, K.: Nucleation barriers, spinodals, and the Ginzburg criterion. Phys. Rev. A
**29**, 341–349 (1984) ADSCrossRefGoogle Scholar - 16.Mishima, O., Stanley, H.E.: The relationship between liquid, supercooled and glassy water. Nature
**396**, 329–335 (1998) ADSCrossRefGoogle Scholar - 17.Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science
**305**, 788–792 (2004) ADSCrossRefGoogle Scholar - 18.Fang, N., et al.: Ultrasonic metamaterials with negative modulus. Nat. Mater.
**5**, 452–456 (2006) ADSCrossRefGoogle Scholar - 19.Falk, F.: Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall.
**28**, 1773–1780 (1980) CrossRefGoogle Scholar - 20.Abeyaratne, R., Knowles, J.K.: A continuum model of a thermoelastic solid capable of undergoing phase transitions. J. Mech. Phys. Solids
**41**, 541–571 (1993) MathSciNetADSzbMATHCrossRefGoogle Scholar - 21.Truskinovsky, L., Vainchtein, A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math.
**66**, 533–553 (2006) MathSciNetCrossRefGoogle Scholar - 22.Fraternali, F., Blesgen, T., Amendola, A., Daraio, C.: Multiscale mass-spring models of carbon nanotube foams. J. Mech. Phys. Solids
**59**, 89–102 (2011) MathSciNetADSzbMATHCrossRefGoogle Scholar