Advertisement

Journal of Statistical Physics

, Volume 150, Issue 5, pp 908–939 | Cite as

Stationary Correlations for the 1D KPZ Equation

  • Takashi Imamura
  • Tomohiro Sasamoto
Article

Abstract

We study exact stationary properties of the one-dimensional Kardar-Parisi-Zhang (KPZ) equation by using the replica approach. The stationary state for the KPZ equation is realized by setting the initial condition the two-sided Brownian motion (BM) with respect to the space variable. Developing techniques for dealing with this initial condition in the replica analysis, we elucidate some exact nature of the height fluctuation for the KPZ equation. In particular, we obtain an explicit representation of the probability distribution of the height in terms of the Fredholm determinants. Furthermore from this expression, we also get the exact expression of the space-time two-point correlation function.

Keywords

KPZ equation Replica method Exact solution Fredholm determinant 

Notes

Acknowledgements

T.S. thanks A. Borodin, I. Corwin, P.L. Ferrari, S. Prolhac, J. Quastel and H. Spohn for useful discussions. Both authors would like to thank R.Y. Inoue for enjoyable conversations on related issues. The work of T.I. and T.S. is supported by KAKENHI (22740251) and KAKENHI (22740054) respectively.

References

  1. 1.
    Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995) zbMATHCrossRefGoogle Scholar
  3. 3.
    Meakin, P.: Fractals, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge (1998) zbMATHGoogle Scholar
  4. 4.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882–4885 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–541 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Sasamoto, T.: Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques. J. Stat. Mech., P07007 (2007) Google Scholar
  11. 11.
    Ferrari, P.: From interacting particle systems to random matrices. J. Stat. Mech., P10016 (2010) Google Scholar
  12. 12.
    Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality, and random matrices. J. Phys. A 4, 403001 (2010) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sasamoto, T., Spohn, H.: The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class. J. Stat. Mech., P11013 (2010) Google Scholar
  14. 14.
    Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices: Theory Appl. 1, 1130001 (2012) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Takeuchi, K.A., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Takeuchi, K.A., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. 1, 34 (2011) CrossRefGoogle Scholar
  17. 17.
    Takeuchi, K.A., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853–890 (2012) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Sasamoto, T., Spohn, H.: One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. Phys. Rev. Lett. 104, 230602 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834, 523–542 (2010) MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Sasamoto, T., Spohn, H.: The crossover regime for the weakly asymmetric simple exclusion process. J. Stat. Phys. 140, 209–231 (2010) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tracy, C.A., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815–844 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Tracy, C.A., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997) MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Corwin, I., Quastel, J.: Crossover distributions at the edge of the rarefaction fan. arXiv:1006.1338
  26. 26.
    Edwards, S.F., Wilkinson, D.R.: The surface statistics of a granular aggregate. Proc. R. Soc. A 381, 17–31 (1982) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Alberts, T., Khanin, K., Quastel, J.: Intermediate disorder regime for directed polymers in dimension 1+1. Phys. Rev. Lett. 105, 090603 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. Europhys. Lett. 90, 20002 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    Kardar, M.: Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582–602 (1987) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Dotsenko, V.: Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers. Europhys. Lett. 90, 20003 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    Dotsenko, V.: Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers. J. Stat. Mech., P07010 (2010) Google Scholar
  32. 32.
    Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963) MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    McGuire, J.B.: Study of exactly soluble one-dimensional N-body problems. J. Math. Phys. 5, 622–636 (1964) MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Calabrese, P., Le Doussal, P.: An exact solution for the KPZ equation with flat initial conditions. Phys. Rev. Lett. 106, 250603 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    Le Doussal, P., Calabrese, P.: The KPZ equation with flat initial condition and the directed polymer with one free end. J. Stat. Mech., P06001 (2012) Google Scholar
  36. 36.
    Imamura, T., Sasamoto, T.: Replica approach to the KPZ equation with half brownian motion initial condition. J. Phys. A, Math. Theor. 44, 385001 (2011) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Prolhac, S., Spohn, H.: Two-point generating function of the free energy for a directed polymer in a random medium. J. Stat. Mech., P01031 (2011) Google Scholar
  38. 38.
    Prolhac, S., Spohn, H.: The one-dimensional KPZ equation and the Airy process. J. Stat. Mech., P03020 (2011) Google Scholar
  39. 39.
    Borodin, A., Corwin, I.: Macdonald processes. arXiv:1111.4408
  40. 40.
    O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437–458 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Borodin, A., Corwin, I., Ferrari, P.L.: Free energy fluctuations for directed polymers in random media in 1+1 dimension. arXiv:1204.1024
  42. 42.
    Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. arXiv:1207.5035
  43. 43.
    Krug, J., Spohn, H.: Kinetic roughening of growing interfaces. In: Godrèche, C. (ed.) Solids Far from Equilibrium: Growth, Morphology and Defects, pp. 479–582. Cambridge University Press, Cambridge (1992) Google Scholar
  44. 44.
    Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In: Sidoravicius, V. (ed.) In and out of Equilibrium. Progress in Probability, vol. 51, pp. 185–204. Birkhäuser, Boston (2002) CrossRefGoogle Scholar
  45. 45.
    Prähofer, M., Spohn, H.: Exact scaling functions for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004) ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265, 1–44 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Commun. Pure Appl. Math. 63, 1017–1070 (2010) zbMATHGoogle Scholar
  48. 48.
    Imamura, T., Sasamoto, T.: Exact solution for the stationary Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 108, 190603 (2012) ADSCrossRefGoogle Scholar
  49. 49.
    Balázs, M., Quastel, J., Seppäläinen, T.: Fluctuation exponent of the KPZ/stochastic Burgers equation. J. Am. Math. Soc. 24, 683–708 (2011) zbMATHCrossRefGoogle Scholar
  50. 50.
    Bornemann, F.: On the numerical evaluation of Fredholm determinants. Math. Comput. 79, 871–915 (2010) MathSciNetADSzbMATHGoogle Scholar
  51. 51.
    Bornemann, F.: On the numerical evaluation of distributions in random matrix theory: a review. Markov Process. Relat. Fields 16, 803–866 (2010) MathSciNetzbMATHGoogle Scholar
  52. 52.
    Prolhac, S., Spohn, H.: The height distribution of the KPZ equation with sharp wedge initial condition: numerical evaluations. Phys. Rev. E 84, 011119 (2011) ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Hairer, M.: Solving the KPZ equation. arXiv:1109.6811
  54. 54.
    Oxford, S.: The hamiltonian of the quantized non-linear Schrödinger equation. Ph.D. Thesis, UCLA (1979) Google Scholar
  55. 55.
    Heckman, G.J., Opdam, E.M.: Yang’s system of particles and Hecke algebras. Ann. Math. 145, 139–173 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Prolhac, S., Spohn, H.: The propagator of the attractive delta-Bose gas in one dimension. J. Math. Phys. 52, 122106 (2011) MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Imamura, T., Sasamoto, T.: Fluctuations of the one-dimensional polynuclear growth model with external sources. Nucl. Phys. B 699, 503–544 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977) MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Colaiori, F., Moore, M.A.: Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 86, 3946–3949 (2001) ADSCrossRefGoogle Scholar
  60. 60.
    Katzav, E., Schwartz, M.: Numerical evidence for stretched exponential relaxations in the Kardar-Parisi-Zhang equation. Phys. Rev. E 69, 052603 (2004) MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    Canet, L., Chaté, H., Delamotte, B., Wschebor, N.: Non-perturbative renormalization group for the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 104, 150601 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
  2. 2.Department of Mathematics and InformaticsChiba UniversityChibaJapan
  3. 3.Zentrum MathematikTechnische Universität MünchenGarchingGermany

Personalised recommendations