Advertisement

Journal of Statistical Physics

, Volume 151, Issue 3–4, pp 440–457 | Cite as

The Social Climbing Game

  • Marco Bardoscia
  • Giancarlo De Luca
  • Giacomo Livan
  • Matteo MarsiliEmail author
  • Claudio J. Tessone
Article

Abstract

The structure of societies depends, to some extent, on the incentives of the individuals they are composed of. We study a stylized model of this interplay, that suggests that the more individuals aim at climbing the social hierarchy, the more society’s hierarchy gets strong. Such a dependence is sharp, in the sense that a persistent hierarchical order emerges abruptly when the preference for social status gets larger than a threshold. This phase transition has its origin in the fact that the presence of a well defined hierarchy allows agents to climb it, thus reinforcing it, whereas in a “disordered” society it is harder for agents to find out whom they should connect to in order to become more central. Interestingly, a social order emerges when agents strive harder to climb society and it results in a state of reduced social mobility, as a consequence of ergodicity breaking, where climbing is more difficult.

Keywords

Social networks Phase transitions Game theory 

Notes

Acknowledgements

We thank Sanjeev Goyal and Giacomo Gori for precious hints and fruitful discussions. C. J. T. acknowledges financial support from Swiss National Science Foundation through grant 100014_126865 and SBF (Swiss Confederation) through research project C09.0055. M. B. heartily thanks M. V. Carlucci for her dedicated support.

References

  1. 1.
    Andrews, D., Leigh, A.: More inequality, less social mobility. Appl. Econ. Lett. 16, 1489–1492 (2009) CrossRefGoogle Scholar
  2. 2.
    Ballester, C., Calvó-Armengol, A., Zenou, Y.: Who’s who in networks. wanted: the key player. Econometrica 74(5), 1403–1417 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bavelas, A.: A mathematical model for group structures. Human Organ. 7, 16–30 (1948) Google Scholar
  4. 4.
    Björklund, A., Jäntti, M.: Intergenerational income mobility in Sweden compared to the United States. Am. Econ. Rev. 87, 1009–1018 (1997) Google Scholar
  5. 5.
    Bollobás, B.: Modern Graph Theory, corrected edn. Graduate Texts in Mathematics. Springer, Heidelberg (1998) zbMATHCrossRefGoogle Scholar
  6. 6.
    Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170 (1987) CrossRefGoogle Scholar
  7. 7.
    Brass, D.J.: Being in the right place: a structural analysis of individual influence in an organization. Adm. Sci. Q. 29(4), 518–539 (1984) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Calvó-Armengol, A., Patacchini, E., Zenou, Y.: Peer effects and social networks in education. Rev. Econ. Stud. 76, 1239 (2009) zbMATHCrossRefGoogle Scholar
  9. 9.
    Challet, D., Marsili, M., Zhang, Y.C.: Minority Games. Oxford University Press, Oxford (2005) zbMATHGoogle Scholar
  10. 10.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978) CrossRefGoogle Scholar
  11. 11.
    Goyal, S., Joshi, S.: Networks of collaboration in oligopoly. Games Econ. Behav. 43, 57–85 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    König, M.D., Tessone, C.J.: Network evolution based on centrality. Phys. Rev. E 84(5), 056108 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    König, M.D., Tessone, C.J., Zenou, Y.: Nestedness in networks: a theoretical model and some applications. CEPR Discussion Paper no. 7521 (2009) Google Scholar
  14. 14.
    Manski, C.F., McFadden, D.L.: Structural Analysis of Discrete Data and Econometric Applications. MIT Press, Cambridge (1981) Google Scholar
  15. 15.
    Mills, W.C.: The Power Elite. Oxford University Press, Oxford (1956) Google Scholar
  16. 16.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Statistical mechanics of topological phase transitions in networks. Phys. Rev. E 69, 046117 (2004) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Pareto, V.: Oeuvres complètes. Droz, Geneva (1964–1989) Google Scholar
  18. 18.
    Park, J., Newman, M.E.J.: Solution of the two-star model of a network. Phys. Rev. E 70, 066146 (2004) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Park, J., Newman, M.E.J.: The statistical mechanics of networks. Phys. Rev. E 70, 066117 (2004) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Saavedra, S., Reed-Tsochas, F., Uzzi, B.: A simple model of bipartite cooperation for ecological and organizational networks. Nature 457(7228), 463–466 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    Sen, A.: Development as Freedom. Oxford University Press, London (1999) Google Scholar
  22. 22.
    Soramäki, K., Bech, M.L., Arnold, J., Glass, R.J., Beyeler, W.E.: The topology of interbank payment flows. Physica A 379(1), 317–333 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    Taylor, D., Larremore, D.B.: Social Climber attachment in forming networks produces phase transition in connectivity. arXiv:1205.3832v1 (2012)
  24. 24.
    Uzzi, B.: The sources and consequences of embeddedness for the economic performance of organizations: the network effect. Am. Sociol. Rev. 61, 674–698 (1996) CrossRefGoogle Scholar
  25. 25.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994) CrossRefGoogle Scholar
  26. 26.
    Wilkinson, R., Pickett, K.: The Spirit Level: Why Equality is Better for Everyone. Penguin, Baltimore (2010) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marco Bardoscia
    • 1
  • Giancarlo De Luca
    • 2
  • Giacomo Livan
    • 1
  • Matteo Marsili
    • 1
    Email author
  • Claudio J. Tessone
    • 3
  1. 1.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.SISSA, International School for Advanced StudiesTriesteItaly
  3. 3.Chair of Systems DesignETH ZurichZurichSwitzerland

Personalised recommendations