Advertisement

Journal of Statistical Physics

, Volume 150, Issue 2, pp 375–397 | Cite as

Error Covariance Matrix Estimation of Noisy and Dynamically Coupled Time Series

Article
  • 128 Downloads

Abstract

We estimate the covariance matrix of the errors in several dynamically coupled time series corrupted by measurement errors. We say that several scalar time series are dynamically coupled if they record the values of measurements of the state variables of the same smooth dynamical system. The estimation of the covariance matrix of the errors is made using a noise reduction algorithm that efficiently exploits the information contained jointly in the dynamically coupled noisy time series. The method is particularly powerful for short length time series with high uncertainties.

Keywords

Measurement error models Noise reduction Error covariance matrix estimation Dynamical coupling Local projection methods 

Notes

Acknowledgements

This research was supported by the grant MTM2009-12672 given by the Spanish government’s Ministerio de Ciencia e Innovación.

References

  1. 1.
    Buonaccorsi, J.P.: Measurement Error Models, Methods, and Applications. Chapman & Hall/CRC, Boca Raton (2010) MATHCrossRefGoogle Scholar
  2. 2.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2004) MATHGoogle Scholar
  3. 3.
    Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1997) Google Scholar
  4. 4.
    Molkov, Y.I., Mukhin, D.N., Loskutov, E.M., Feigin, A.M.: Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series. Phys. Rev. E 80, 046207 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Diks, C.: Nonlinear Time Series Analysis. Methods and Applications. World Scientific, Singapore (1999) MATHCrossRefGoogle Scholar
  6. 6.
    Smith, R.L.: Estimating dimension in noisy chaotic time series. J. R. Stat. Soc. B 54, 329–351 (1992) MATHGoogle Scholar
  7. 7.
    Schreiber, T.: Determination of the noise level of chaotic time series. Phys. Rev. E 48, R13–R16 (1993) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Schouten, J.C., Takens, F., van den Bleek, C.M.: Estimation of the dimension of a noisy attractor. Phys. Rev. E 50(3), 1851 (1994) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Diks, C.: Estimating invariants of noisy attractors. Phys. Rev. E 53, R4263–R4266 (1996) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Schreiber, T.: Influence of Gaussian noise on the correlation exponent. Phys. Rev. E 56(1), 274–277 (1997) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Oltmans, H., Verheijen, P.J.T.: Influence of noise on power-law scaling functions and an algorithm for dimension estimations. Phys. Rev. E 56(1), 1160–1170 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    Kugiumtzis, D.: Correction of the correlation dimension for noisy time series. Int. J. Bifurc. Chaos 7(6), 1283–1294 (1997) MATHCrossRefGoogle Scholar
  13. 13.
    Galka, A.: Topics in Nonlinear Time Series Analysis with Implications for EEC Analysis. World Scientific, Singapore (2000) CrossRefGoogle Scholar
  14. 14.
    Yu, D., Small, M., Harrison, R.G., Diks, C.: Efficient implementation of the gaussian kernel algorithm in estimating invariants and noise level from noisy time series data. Phys. Rev. E 61(4), 3750–3756 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    Leontitsis, A., Pange, J., Bountis, T.: Large noise level estimation. Int. J. Bifurc. Chaos 13(8), 2309–2313 (2003) MATHCrossRefGoogle Scholar
  16. 16.
    Urbanowicz, K., Holyst, J.A.: Noise-level estimation of time series using coarse-grained entropy. Phys. Rev. E 67, 046218 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    Kaminski, T., Wendeker, M., Urbanowicz, K., Litak, G.: Combustion process in a spark ignition engine: dynamics and noise level estimation. Chaos 14(2), 461 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    Strumik, M., Macek, W.M., Redaelli, S.: Discriminating additive from dynamical noise for chaotic time series. Phys. Rev. E 72, 036219 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    Leontitsis, A.: Red noise estimation. Int. J. Bifurc. Chaos 16(7), 2111–2117 (2006) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Jayawardena, A.W., Xu, P., Li, W.K.: A method of estimating the noise level in a chaotic time series. Chaos 18, 023115 (2008) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Cawley, R., Hsu, G.-H.: Local-geometric-projection method for noise reduction in chaotic maps and flows. Phys. Rev. A 46(6), 3057–3082 (1992) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Urbanowicz, K., Holyst, J.A.: Noise reduction in chaotic time series by a local projection with nonlinear constraints. Acta Phys. Pol. B 35(9), 2175–2197 (2004) MathSciNetADSGoogle Scholar
  23. 23.
    Cellucci, C.J., Albano, A.M., Rapp, P.E., Pittenger, R.A., Josiassen, R.C.: Detecting noise in a time series. Chaos 7(3), 414–422 (1997) ADSMATHCrossRefGoogle Scholar
  24. 24.
    Hu, J., Gao, J.B., White, K.D.: Estimating measurement noise in a time series by exploiting nonstationarity. Chaos Solitons Fractals 22, 807–819 (2004) ADSMATHCrossRefGoogle Scholar
  25. 25.
    Heald, J.P.M., Stark, J.: Estimation of noise levels for models of chaotic dynamical systems. Phys. Rev. Lett. 84(11), 2366–2369 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    Jones, A.J., Evans, D., Kemp, S.E.: A note on the Gamma test analysis of noisy input/output data and noisy time series. Physica D 229, 1–8 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Urbanowicz, K., Holyst, J.A.: Noise estimation by use of neighboring distances in takens space and its applications to stock market data. Int. J. Bifurc. Chaos 16(6), 1865–1869 (2006) MATHCrossRefGoogle Scholar
  28. 28.
    Tanaka, N., Okamoto, H., Naito, M.: Estimating the amplitude of measurement noise present in chaotic time series. Chaos 9(2), 436–444 (1999) ADSMATHCrossRefGoogle Scholar
  29. 29.
    Soofi, A.S., Cao, L. (eds.): Modeling and Forecasting Financial Data. Kluwer Academic, Boston (2002) Google Scholar
  30. 30.
    Fuller, W.A.: Measurement Error Models. Wiley Series in Probability and Statistics. Wiley, New York (2006) MATHGoogle Scholar
  31. 31.
    Cheng, C.-L., Van Ness, J.W.: Statistical Regression with Measurement Error. Arnold, London (1999) MATHGoogle Scholar
  32. 32.
    Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement Error in Nonlinear Models. A Modern Perspective. Chapman & Hall/CRC, New York (2006) MATHCrossRefGoogle Scholar
  33. 33.
    Mera, M.E., Morán, M.: Geometric noise reduction for multivariate time series. Chaos 16, 013116 (2006) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Mera, M.E., Morán, M.: Reduction of noise of large amplitude through adaptive neighborhoods. Phys. Rev. E 80, 016207 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C., Schreiber, T.: On noise reduction methods for chaotic data. Chaos 3(2), 127–141 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    Kostelich, E.J., Schreiber, T.: Noise reduction in chaotic time-series data: a survey of common methods. Phys. Rev. E 48, 1752–1763 (1993) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Davies, M.: Noise reduction schemes for chaotic time series. Physica D 79, 174–192 (1994) MathSciNetADSMATHGoogle Scholar
  38. 38.
    Mera, M.E., Morán, M.: Noise reduction by recycling dynamically coupled time series. Chaos 21, 043110 (2011) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Netoff, T.I., Carroll, T.L., Pecora, L.M., Schiff, S.J.: Detecting coupling in the presence of noise and nonlinearity. In: Scheler, B., Winterhalder, M., Timmer, J. (eds.) Handbook of Time Series Analysis, pp. 265–282. Wiley-VCH, Weinheim (2006) CrossRefGoogle Scholar
  40. 40.
    Takens, F.: Dynamical systems and turbulence. In: Rang, D.A., Young, L.-S. (eds.) Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981) Google Scholar
  41. 41.
    Sauer, T., Yorke, J., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1991) MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    Kern, A., Steeb, W.-H., Stoop, R.: Projective noise cleaning with dynamic neighborhood selection. Int. J. Mod. Phys. C 11(1), 125–146 (2000) ADSCrossRefGoogle Scholar
  43. 43.
    Matassini, L., Kantz, H., Holyst, J., Hegger, R.: Optimizing of recurrence plots for noise reduction. Phys. Rev. E 65, 021102 (2002) ADSCrossRefGoogle Scholar
  44. 44.
    Leontitsis, A., Bountis, T., Pagge, J.: An adaptive way for improving noise reduction using local geometric projection. Chaos 14(1), 106 (2004) ADSCrossRefGoogle Scholar
  45. 45.
    Johnson, M.T., Povinelli, R.J.: Generalized phase space projection for nonlinear noise reduction. Physica D 201, 306–317 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Luo, X., Zhang, J., Small, M.: Optimal phase-space projection for noise reduction. Phys. Rev. E 72, 046710 (2005) ADSCrossRefGoogle Scholar
  47. 47.
    Sauer, T.: A noise reduction method for signals from nonlinear systems. Physica D 58, 193–201 (1992) MathSciNetADSMATHCrossRefGoogle Scholar
  48. 48.
    Hegger, R., Schreiber, T.: A noise reduction method for multivariate time series. Phys. Lett. A 170, 305–310 (1992) ADSCrossRefGoogle Scholar
  49. 49.
    Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9, 413 (1999) ADSMATHCrossRefGoogle Scholar
  50. 50.
    Kostelich, E.J., Yorke, J.A.: Noise reduction: finding the simplest dynamical system consistent with the data. Physica D 41, 183–196 (1990) MathSciNetADSMATHCrossRefGoogle Scholar
  51. 51.
    Jaeger, L., Kantz, H.: Unbiased reconstruction of the dynamics underlying a noisy chaotic time series. Chaos 6, 440 (1996) ADSCrossRefGoogle Scholar
  52. 52.
    Bröcker, J., Parlitz, U.: Efficient noncausal noise reduction for deterministic time series. Chaos 11(2), 319 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  53. 53.
    Sprott, J.C.: Elegant Chaos. World Scientific, Singapore (2010) MATHCrossRefGoogle Scholar
  54. 54.
    International Mathematics and Statistics Libraries (IMSL, vol. 4.01). Visual Numerics Inc. (1997) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dpto. de Fundamentos del Análisis Económico IUniversidad ComplutenseMadridSpain

Personalised recommendations