Advertisement

Journal of Statistical Physics

, Volume 151, Issue 1–2, pp 131–149 | Cite as

The Role of Noise and Initial Conditions in the Asymptotic Solution of a Bounded Confidence, Continuous-Opinion Model

  • Adrián Carro
  • Raúl ToralEmail author
  • Maxi San Miguel
Article

Abstract

We study a model for continuous-opinion dynamics under bounded confidence. In particular, we analyze the importance of the initial distribution of opinions in determining the asymptotic configuration. Thus, we sketch the structure of attractors of the dynamical system, by means of the numerical computation of the time evolution of the agents density. We show that, for a given bound of confidence, a consensus can be encouraged or prevented by certain initial conditions. Furthermore, a noisy perturbation is added to the system with the purpose of modeling the free will of the agents. As a consequence, the importance of the initial condition is partially replaced by that of the statistical distribution of the noise. Nevertheless, we still find evidence of the influence of the initial state upon the final configuration for a short range of the bound of confidence parameter.

Keywords

Social simulation Opinion dynamics Continuous opinions Bounded confidence 

Notes

Acknowledgements

This work was supported by MINECO (Spain), Comunitat Autónoma de les Illes Balears, FEDER, and the European Commission under project FIS2007-60327. AC is supported by a PhD grant from the University of the Balearic Islands.

References

  1. 1.
    Castellano, C., Fortunato, S., Loreto, V.: Rev. Mod. Phys. 81, 591 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    Lorenz, J.: Int. J. Mod. Phys. C 18, 1819 (2007) ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Hegselmann, R., Krause, U.: J. Artif. Soc. Soc. Simul. 5, 1 (2002) Google Scholar
  4. 4.
    Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Adv. Complex Syst. 3, 87 (2000) CrossRefGoogle Scholar
  5. 5.
    Weisbuch, G., Deffuant, G., Amblard, F., Nadal, J.P.: Complexity 7(3), 55 (2002) CrossRefGoogle Scholar
  6. 6.
    Krause, U.: In: Elyadi, S., Ladas, G., Popenda, J., Rakowski, J. (eds.) Communications in Difference Equations, pp. 227–236. Gordon & Breach, Amsterdam (2000) Google Scholar
  7. 7.
    Pineda, M., Toral, R., Hernández-García, E.: J. Stat. Mech. Theory Exp. 2009(08), P08001 (2009) CrossRefGoogle Scholar
  8. 8.
    Pineda, M., Toral, R., Hernández-García, E.: Eur. Phys. J. D 62, 109 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    Ben-Naim, E., Krapivsky, P., Redner, S.: Physica D, Nonlinear Phenom. 183(3–4), 190 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Lorenz, J., Tonella, G.: In: Proceedings of the Fifth IASTED International Conference on Modelling, Simulation, and Optimization, pp. 61–66 (2005) Google Scholar
  11. 11.
    Laguna, M.F., Abramson, G., Zanette, D.H.: Complexity 9(4), 31 (2004) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Porfiri, M., Bollt, E.M., Stilwell, D.J.: Eur. Phys. J. B, Condens. Matter Complex Syst. 57, 481 (2007) CrossRefGoogle Scholar
  13. 13.
    Lorenz, J.: PHD Thesis, Universität Bremen (2007) Google Scholar
  14. 14.
    Lorenz, J.: Complexity 15(4), 43 (2010) MathSciNetGoogle Scholar
  15. 15.
    Mäs, M., Flache, A., Helbing, D.: PLoS Comput. Biol. 6(10), e1000959 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB)Campus Universitat Illes BalearsPalma de MallorcaSpain

Personalised recommendations