Journal of Statistical Physics

, Volume 151, Issue 1–2, pp 383–393 | Cite as

Emergence of Influential Spreaders in Modified Rumor Models

  • Javier Borge-Holthoefer
  • Sandro Meloni
  • Bruno Gonçalves
  • Yamir Moreno
Article

Abstract

The burst in the use of online social networks over the last decade has provided evidence that current rumor spreading models miss some fundamental ingredients in order to reproduce how information is disseminated. In particular, recent literature has revealed that these models fail to reproduce the fact that some nodes in a network have an influential role when it comes to spread a piece of information. In this work, we introduce two mechanisms with the aim of filling the gap between theoretical and experimental results. The first model introduces the assumption that spreaders are not always active whereas the second model considers the possibility that an ignorant is not interested in spreading the rumor. In both cases, results from numerical simulations show a higher adhesion to real data than classical rumor spreading models. Our results shed some light on the mechanisms underlying the spreading of information and ideas in large social systems and pave the way for more realistic diffusion models.

Keywords

Rumor spreading Online social networks Human activity patterns 

References

  1. 1.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.A.: The role of social networks in information diffusion. In: WWW’12, p. 519 (2012) Google Scholar
  2. 2.
    Barabasi, A.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Borge-Holthoefer, J., Moreno, Y.: Absence of influential spreaders in rumor dynamics. Phys. Rev. E 85, 026116 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    Borge-Holthoefer, J., Rivero, A., Moreno, Y.: Locating privileged spreaders on an online social network. Phys. Rev. E 85, 066123 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    Castellano, C., Pastor-Satorras, R.: Competing activation mechanisms in epidemics on networks. Sci. Rep. 2, 371 (2012) CrossRefGoogle Scholar
  8. 8.
    Cosley, D., Huttenlocher, D., Kleinberg, J., Lan, X., Suri, S.: Sequential influence models in social networks. In: ICWSM’10, p. 26 (2010) Google Scholar
  9. 9.
    Daley, D.J., Kendal, D.G.: Stochastic rumours. J. Inst. Math. Appl. 1, 42 (1965) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Daley, D.J., Gani, J.: Epidemic Modelling. Cambridge University Press, Cambridge (2000) Google Scholar
  11. 11.
    Dietz, K.: Epidemics and rumours: a survey. J. R. Stat. Soc. A, General 130, 505 (1967) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Galam, S.: Modeling rumors: the no plane Pentagon French hoax case. Physica A 320, 571 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Goffman, W., Newill, V.A.: Generalization of epidemic theory—an application to the transmission of ideas. Nature 204, 225 (1964) ADSCrossRefGoogle Scholar
  14. 14.
    Gonçalves, B., Ramasco, J.J.: Human dynamics revealed through web analytics. Phys. Rev. E 78, 026123 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    González-Bailón, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1, 197 (2011) Google Scholar
  16. 16.
    Kimmel, A.J.: Rumors and rumor control. J. Behav. Finance 5, 134 (2004) CrossRefGoogle Scholar
  17. 17.
    Kitsak, M., Gallos, L., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H., Makse, H.: Identification of influential spreaders in complex networks. Nat. Phys. 6, 888 (2010) CrossRefGoogle Scholar
  18. 18.
    Klemm, K., Serrano, M., Eguiluz, V., Miguel, M.: A measure of individual role in collective dynamics: spreading at criticality. Sci. Rep. 2, 292 (2012) CrossRefGoogle Scholar
  19. 19.
    Kosfeld, M.: Rumours and markets. J. Math. Econ. 41, 646 (2005) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M.: Superspreading and the effect of individual variation on disease emergence. Nature 438, 355 (2005). http://www.nature.com/nature/journal/v438/n7066/full/nature04153.html ADSCrossRefGoogle Scholar
  21. 21.
    Moreno, Y., Nekovee, M., Vespignani, A.: Efficiency and reliability of epidemic data dissemination in complex networks. Phys. Rev. E 69, 055101 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M.: Theory of rumour spreading in complex social networks. Physica A 374, 457–470 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of dynamic networks. Sci. Rep. 2, 469 (2012) CrossRefGoogle Scholar
  24. 24.
    Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press, New York (2003) Google Scholar
  25. 25.
    Vazquez, A., Racz, B., Lukacs, A., Barabasi, A.: Impact of non-Poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    Watts, D.J., Dodds, P.S.: Influentials, networks, and public opinion formation. J. Consum. Res. 34, 441 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Javier Borge-Holthoefer
    • 1
  • Sandro Meloni
    • 1
  • Bruno Gonçalves
    • 2
    • 3
  • Yamir Moreno
    • 1
    • 4
    • 5
  1. 1.Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
  2. 2.Department of Physics, College of Computer and Information Sciences and Department of Health SciencesNortheastern UniversityBostonUSA
  3. 3.Aix Marseille UniversitéMarseillesFrance
  4. 4.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain
  5. 5.Complex Networks and Systems Lagrange LabInstitute for Scientific InterchangeTurinItaly

Personalised recommendations