Journal of Statistical Physics

, Volume 149, Issue 3, pp 478–495 | Cite as

Random Fields on Model Sets with Localized Dependency and Their Diffraction



For a random field on a general discrete set, we introduce a condition that the range of the correlation from each site is within a predefined compact set D. For such a random field ω defined on the model set Λ that satisfies a natural geometric condition, we develop a method to calculate the diffraction measure of the random field. The method partitions the random field into a finite number of random fields, each being independent and admitting the law of large numbers. The diffraction measure of ω consists almost surely of a pure-point component and an absolutely continuous component. The former is the diffraction measure of the expectation E[ω], while the inverse Fourier transform of the absolutely continuous component of ω turns out to be a weighted Dirac comb which satisfies a simple formula. Moreover, the pure-point component will be understood quantitatively in a simple exact formula if the weights are continuous over the internal space of Λ. Then we provide a sufficient condition that the diffraction measure of a random field on a model set is still pure-point.


Diffraction Pure-point spectrum Absolutely continuous spectrum Quasicrystal Model set 



The first author thanks Prof. Michael Baake and anonymous referee.


  1. 1.
    Argabright, L., Gil de Lamadrid, J.: Fourier Analysis of Unbounded Measures on Locally Compact Abelian Groups. Memoirs of the American Mathematical Society, vol. 145. Am. Math. Soc., Providence (1974) Google Scholar
  2. 2.
    Baake, M., Birkner, M., Moody, R.V.: Diffraction of stochastic point sets: explicitly computable examples. Commun. Math. Phys. 293, 611–660 (2010) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Baake, M., Hermisson, J., Pleasants, P.A.B.: The torus parametrization of quasiperiodic LI-classes. J. Phys. A, Math. Gen. 30(9), 3029–3056 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Baake, M., Lenz, D., Moody, R.V.: Characterization of model sets by dynamical systems. Ergod. Theory Dyn. Syst. 27(2), 341–382 (2007). doi: 10.1017/S0143385706000800 MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Baake, M., Moody, R.V.: Diffractive point sets with entropy. J. Phys. A, Math. Gen. 31, 9023–9039 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Baake, M., Moody, R.V.: Self-similar measures for quasicrystals. In: Directions in Mathematical Quasicrystals. CRM Monogr. Ser., vol. 13, pp. 1–42. Am. Math. Soc., Providence (2000) Google Scholar
  7. 7.
    Baake, M., Moody, R.V.: Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. 573, 61–94 (2004) MathSciNetMATHGoogle Scholar
  8. 8.
    Baake, M., Moody, R.V., Schlottmann, M.: Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces. J. Phys. A, Math. Gen. 31(27), 5755–5765 (1998). doi: 10.1088/0305-4470/31/27/006 MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Baake, M., Zint, N.: Absence of singular continuous diffraction for discrete multi-component particle models. J. Stat. Phys. 130(4), 727–740 (2008). doi: 10.1007/s10955-007-9445-3 MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Barabash, R., Ice, G., Turchi, P. (eds.): Diffuse Scattering and the Fundamental Properties of Materials. Momentum Press, New York (2009) Google Scholar
  11. 11.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis: vol. I. Structure of Topological Groups, Integration Theory, Group Representations, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115. Springer, Berlin (1979) Google Scholar
  12. 12.
    Hof, A.: Diffraction by aperiodic structures at high temperatures. J. Phys. A, Math. Gen. 28(1), 57–62 (1995) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Hof, A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169(1), 25–43 (1995) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Janot, C.: Quasicrystals: A Primer. Monographs on the Physics and Chemistry of Materials, vol. 50, 2nd edn. Oxford University Press, Oxford (1994) MATHGoogle Scholar
  15. 15.
    Külske, C.: Concentration inequalities for functions of Gibbs fields with application to diffraction and random Gibbs measures. Commun. Math. Phys. 239(1–2), 29–51 (2003) ADSMATHCrossRefGoogle Scholar
  16. 16.
    Lenz, D.: Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks. Commun. Math. Phys. 287(1), 225–258 (2009). doi: 10.1007/s00220-008-0594-2 MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Lenz, D., Richard, C.: Pure point diffraction and cut and project schemes for measures: the smooth case. Math. Z. 256(2), 347–378 (2007). doi: 10.1007/s00209-006-0077-0 MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Meyer, Y.: Algebraic Numbers and Harmonic Analysis. North-Holland Mathematical Library, vol. 2. North-Holland, Amsterdam (1972) MATHGoogle Scholar
  19. 19.
    Moody, R.V.: Meyer sets and their duals. In: The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 489, pp. 403–441. Kluwer Academic, Dordrecht (1997) Google Scholar
  20. 20.
    Moody, R.V.: Uniform distribution in model sets. Can. Math. Bull. 45(1), 123–130 (2002) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Müller, P., Richard, C.: Ergodic properties of randomly coloured point sets. Can. J. Math. (2012). doi: 10.4153/CJM-2012-009-7 Google Scholar
  22. 22.
    Nevo, A.: Pointwise ergodic theorems for actions of groups. In: Handbook of Dynamical Systems, vol. 1B, pp. 871–982. Elsevier, Amsterdam (2006) CrossRefGoogle Scholar
  23. 23.
    Schlottmann, M.: Generalized model sets and dynamical systems. In: Directions in Mathematical Quasicrystals. CRM Monogr. Ser., vol. 13, pp. 143–159. Am. Math. Soc., Providence (2000) Google Scholar
  24. 24.
    Stroock, D.W.: Probability Theory: An Analytic View. Cambridge University Press, Cambridge (1993) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Mathematical InstituteSendaiJapan
  2. 2.Research and Development SectionHitachi East Japan Solutions, Ltd.SendaiJapan

Personalised recommendations