Journal of Statistical Physics

, Volume 148, Issue 3, pp 480–501 | Cite as

Quantum Fluctuation Relations for the Lindblad Master Equation

  • R. Chetrite
  • K. Mallick


An open quantum system interacting with its environment can be modeled under suitable assumptions as a Markov process, described by a Lindblad master equation. In this work, we derive a general set of fluctuation relations for systems governed by a Lindblad equation. These identities provide quantum versions of Jarzynski-Hatano-Sasa and Crooks relations. In the linear response regime, these fluctuation relations yield a fluctuation-dissipation theorem (FDT) valid for a stationary state arbitrarily far from equilibrium. For a closed system, this FDT reduces to the celebrated Callen-Welton-Kubo formula.


Fluctuation relations Quantum Markovian process Fluctuation Dissipation Theorem 



R.C. thanks K. Gawȩdzki for pointing out the fact that the Lindbladian character of Eq. (43) is non-trivial and the relation with detailed balance. R.C. acknowledges the support of the Koshland center for basic research. K.M. thanks M. Bauer and H. Orland for useful comments and S. Mallick for useful remarks on the manuscript. Results similar to those presented here were also reached independently by K. Gawȩdzki and S. Attal some time ago [7].


  1. 1.
    Accardi, L.: On the quantum Feynman-Kac formula. Milan J. Math. 48(1), 135–180 (1978) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Agarwal, G.S.: Open quantum Markovian systems and the microreversibility, Z. Phys. 258, 409 (1972) ADSGoogle Scholar
  3. 3.
    Alicki, R.: On the detailed balance condition for non-Hamiltonian systems. Rep. Math. Phys. 10, 2249 (1976) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alicki, R.: The quantum open system as a model of the heat engine. J. Phys. A 12, 5 (1979) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Lecture Notes Phys., vol. 717. Springer, Berlin (2007) zbMATHGoogle Scholar
  6. 6.
    Allahverdyan, A.E., Nieuwenhuizen, T.M.: Fluctuations of works from quantum sub-ensembles: the case against quantum work-fluctuation theorems. Phys. Rev. E 71, 066102 (2005) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Attal, S., Gawȩdzki, K.: Private communication Google Scholar
  8. 8.
    Attal, S., Joye, A., Pillet, C.A.: Quantum Open Systems. Vol. II: The Markovian Approach. Lecture Notes in Mathematics, vol. 1881. Springer, Berlin (2006) Google Scholar
  9. 9.
    Andrieux, D., Gaspard, P.: Quantum work relations and response theory. Phys. Rev. Lett. 100, 230404 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    Andrieux, D., Gaspard, P., Monnai, T., Tasaki, S.: Fluctuation theorem for currents in open quantum systems. New J. Phys. 11, 043014 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    Bauer, M., Bernard, D.: Quantum stochastic processes: a case study. J. Stat. Mech. P04016 (2011) Google Scholar
  12. 12.
    Bochkov, G.N., Kuzovlev, Y.E.: On general theory of thermal fluctuations in non linear systems. Sov. Phys. JETP 45, 125–130 (1977) ADSGoogle Scholar
  13. 13.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, London (2002) zbMATHGoogle Scholar
  14. 14.
    Caldeira, A.O., Leggett, A.J.: Influence of damping on quantum interference: an exactly soluble model. Phys. Rev. A 31, 1057 (1985) ADSCrossRefGoogle Scholar
  15. 15.
    Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34 (1951) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Callens, I., De Roeck, W., Jacobs, T., Maes, C., Netocny, K.: Quantum entropy production as a measure of irreversibility. Physica D 187(1–4), 11 (2002). Google Scholar
  17. 17.
    Campisi, M., Talkner, P., Hänggi, P.: Fluctuation theorem for arbitrary open quantum systems. Phys. Rev. Lett. 102, 210401 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    Campisi, M., Talkner, P., Hänggi, P.: Quantum Bochkov-Kuzovlev work fluctuation theorems. Philos. Trans. R. Soc. Lond. A 369, 291 (2011) ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Campisi, M., Talkner, P., Hänggi, P.: Quantum fluctuation relations: foundations and applications. Rev. Mod. Phys. 83, 771 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    Chernyak, V., Mukamel, S.: Effect of quantum collapse on the distribution of work in driven single molecules. Phys. Rev. Lett. 93, 048302 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    Chetrite, R., Gawȩdzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Chetrite, R., Falkovich, G., Gawȩdzki, K.: Fluctuation relations in simple examples of non-equilibrium steady states. J. Stat. Mech. P08005 (2008) Google Scholar
  23. 23.
    Crooks, G.E.: Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90, 1481 (1999) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    Crooks, G.E.: On the quantum Jarzynski identity. J. Stat. Mech. P10023 (2008) Google Scholar
  26. 26.
    Crooks, G.E.: Quantum operation time reversal. Phys. Rev. A 77, 034101 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms. Wiley, New York (1992) Google Scholar
  28. 28.
    Davies, E.B.: Quantum Theory of Open Systems. Academic Press, San Diego (1976) zbMATHGoogle Scholar
  29. 29.
    Deffner, S., Lutz, E.: Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    DelMoral, P.: Feynman-Kac Formulae Genealogical and Interacting Particle Systems with Applications. Probability and Applications. Springer, New York (2004) Google Scholar
  31. 31.
    Derezinski, J., De Roeck, W.: Extended weak coupling limit for Pauli-Fierz operators. Commun. Math. Phys. 279, 1–30 (2008) ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Derezinski, J., De Roeck, W., Maes, C.: Fluctuations of quantum currents and unravelings of master equations. J. Stat. Phys. 131, 341 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Derrida, B.: Non-Equilibrium steady states: fluctuations and large deviations of the density and the current. J. Stat. Mech. P07023 (2007) Google Scholar
  34. 34.
    De Roeck, W., Maes, C.: Quantum version of free-energy—irreversible-work relations. Phys. Rev. E 69, 026115 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    De Roeck, W., Maes, C.: Fluctuations of the dissipated heat for a quantum stochastic model. Rev. Math. Phys. 18, 619 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    De, W.: Roeck quantum fluctuation theorem: can we go from micro to meso. C. R. Phys. 8, 674 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    Douarche, F., Ciliberto, S., Petrosyan, A., Rabbiosi, I.: An experimental test of the Jarzynski equality in a mechanical experiment. Europhys. Lett. 70, 593 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    Dumcke, R., Spohn, H.: The proper form of the generator in the weak coupling limit. Z. Phys. B 34, 419–422 (1979) ADSCrossRefGoogle Scholar
  39. 39.
    Dumcke, R.: The low density limit for an N-level system interacting with a free Bose or Fermi gas. Commun. Math. Phys. 97, 331 (1985) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Eisler, V.: Crossover between ballistic and diffusive transport: the quantum exclusion process. J. Stat. Mech. P06007 (2011) Google Scholar
  41. 41.
    Engel, A., Nolte, R.: Jarzynski equation for a simple quantum system: comparing two definitions of work. Europhys. Lett. 79, 10003 (2007) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Esposito, M., Mukamel, S.: Fluctuation theorems for quantum master equations. Phys. Rev. E 73, 046129 (2006) MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Esposito, M., Harbola, U., Mukamel, S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401 (1993) ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Fagnola, F., Umanità, V.: Generators of detailed balance quantum Markov semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10, 335 (2007). arXiv:0707.2147v2 [math-ph] MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Fagnola, F., Umanità, V.: Detailed balance, time reversal and generators of quantum Markov semigroups. Math. Notes (Mat. Zametki) 84, 108 (2008) zbMATHCrossRefGoogle Scholar
  47. 47.
    Fonseca Romero, K.M., Talkner, P., Hänggi, P.: Is the dynamics of open quantum systems always linear? Phys. Rev. A 69, 052109 (2004) ADSCrossRefGoogle Scholar
  48. 48.
    Ford, G.W., Connell, R.F.: There is no quantum regression theorem. Phys. Rev. Lett. 77, 5 (1996) Google Scholar
  49. 49.
    Frigerio, A., Gorini, V., Kossakowski, A., Verri, M.: Quantum detailed balance and KMS condition. Commun. Math. Phys. 57(2), 97–110 (1977) MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    Frigerio, A., Gorini, V.: Markov dilations and quantum detailed balance. Commun. Math. Phys. 93(4), 517–532 (1984) MathSciNetADSzbMATHCrossRefGoogle Scholar
  51. 51.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694 (1995) ADSCrossRefGoogle Scholar
  52. 52.
    Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000) zbMATHGoogle Scholar
  53. 53.
    Gorini, V., Kossakowski, A.: N-level system in contact with a singular reservoir. J. Math. Phys. 17, 7 (1976). Google Scholar
  54. 54.
    Hänggi, P., Thomas, H.: Stochastic processes: time evolution, symmetries and linear response. Phys. Rep. 88, 207 (1982) MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Haroche, S., Raymond, J.-M.: Exploring the Quantum. Oxford University Press, London (2006) zbMATHCrossRefGoogle Scholar
  56. 56.
    Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001) ADSCrossRefGoogle Scholar
  57. 57.
    Hepp, K., Lieb, H.: Phase transition in reservoir driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573–602 (1973) Google Scholar
  58. 58.
    Horowitz, J.M.: Quantum trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator. Phys. Rev. E 85, 031110 (2012) ADSCrossRefGoogle Scholar
  59. 59.
    Huber, G., Schmidt-Kaler, F., Deffner, S., Lutz, E.: Employing trapped cold ions to verify the quantum Jarzynski equality. Phys. Rev. Lett. 101, 070403 (2008) ADSCrossRefGoogle Scholar
  60. 60.
    Hummer, G., Szabo, A.: Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. USA 98, 3658 (2001) ADSCrossRefGoogle Scholar
  61. 61.
    Komnik, A., Saleur, H.: Quantum fluctuation theorem in an interacting setup: point contacts in fractional quantum hall edge state devices. Phys. Rev. Lett. 107, 100601 (2011) ADSCrossRefGoogle Scholar
  62. 62.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997) ADSCrossRefGoogle Scholar
  63. 63.
    Jarzynski, C.: Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56, 5018 (1997) ADSCrossRefGoogle Scholar
  64. 64.
    Jarzynski, C., Wójcik, D.K.: Classical and quantum fluctuation theorems for heat exchange. Phys. Rev. Lett. 92, 230602 (2004) ADSCrossRefGoogle Scholar
  65. 65.
    Klich, I.: Full counting statistics, an elementary derivation of Levitov’s formula. In: Nazarov, Yu.V., Blanter, Y.M., (eds.) Quantum Noise. Kluwer, Dordrecht (2003) Google Scholar
  66. 66.
    Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966) ADSCrossRefGoogle Scholar
  67. 67.
    Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Physics. Springer, Berlin (1998) zbMATHGoogle Scholar
  68. 68.
    Kurchan, J.: A quantum fluctuation theorem. arXiv:cond-mat/0007360 (2000)
  69. 69.
    Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A, Math. Gen. 31, 3719 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  70. 70.
    Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  71. 71.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) MathSciNetADSzbMATHCrossRefGoogle Scholar
  72. 72.
    Lindblad, G.: On the existence of quantum subdynamics. J. Phys. A 29, 4197–4207 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar
  73. 73.
    Lindblad, G.: On the existence of quantum subdynamics. J. Math. Phys. 39, 5 (1998) MathSciNetCrossRefGoogle Scholar
  74. 74.
    Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 7(296), 5574 (2002) Google Scholar
  75. 75.
    Liu, F.: A derivation of quantum Jarzynski equality using quantum Feyman-Kac formula. arXiv:1201.1557 (2012)
  76. 76.
    Mallick, K.: Some exact results for the exclusion process. J. Stat. Mech. P01024 (2011) Google Scholar
  77. 77.
    Martin, P.C., Schwinger, J.: Theory of many-particle systems. I. Phys. Rev. 115, 1342 (1959) MathSciNetADSzbMATHCrossRefGoogle Scholar
  78. 78.
    Majewski, W.A.: The detailed balance condition in quantum statistical mechanics. J. Math. Phys. 25, 614 (1984) MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    Monnai, T.: Unified treatment of the quantum fluctuation theorem and the Jarzynski equality in terms of microscopic reversibility. Phys. Rev. E 72, 027102 (2005) ADSCrossRefGoogle Scholar
  80. 80.
    Putz, W., Woronowicz, S.L.: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273–290 (1978) ADSCrossRefGoogle Scholar
  81. 81.
    Mukamel, S.: Quantum extension of the Jarzynski relation: analogy with stochastic dephasing. Phys. Rev. Lett. 90, 170604 (2003) ADSCrossRefGoogle Scholar
  82. 82.
    Negele, J.W., Orland, H.: Quantum Many-Particle Systems. Westview, Boulder (1988) zbMATHGoogle Scholar
  83. 83.
    Pechukas, P.: Reduced dynamics need not be completely positive. Phys. Rev. Lett. 73, 8 (1994) MathSciNetGoogle Scholar
  84. 84.
    Prost, J., Joanny, J.-F., Parrondo, J.M.R.: Generalized fluctuation-dissipation theorem for steady-state systems. Phys. Rev. Lett. 103, 090601 (2009) ADSCrossRefGoogle Scholar
  85. 85.
    Saito, K., Dhar, A.: Fluctuation theorem in quantum heat conduction. Phys. Rev. Lett. 99, 180601 (2007) ADSCrossRefGoogle Scholar
  86. 86.
    Saito, K., Utsumi, Y.: Symmetry in full counting statistics, fluctuation theorem, and relations among nonlinear transport coefficients in the presence of a magnetic field. Phys. Rev. B 78, 115429 (2008) ADSCrossRefGoogle Scholar
  87. 87.
    Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 5 (1978) MathSciNetCrossRefGoogle Scholar
  88. 88.
    Spohn, H., Lebowitz, J.L.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109 (1978) CrossRefGoogle Scholar
  89. 89.
    Stratonovich, R.L.: Nonlinear Nonequilibrium Thermodynamics II. Springer, Berlin (1994) zbMATHGoogle Scholar
  90. 90.
    Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1968) Google Scholar
  91. 91.
    Talkner, P.: The failure of the quantum regression hypothesis. Ann. Phys. 167, 390–436 (1986) MathSciNetADSCrossRefGoogle Scholar
  92. 92.
    Talkner, P., Lutz, E., Hänggi, P.: Fluctuation theorem: work is not an observable. Phys. Rev. E 75, 050102(R) (2007) ADSCrossRefGoogle Scholar
  93. 93.
    Talkner, P., Hänggi, P.: The Tasaki-Crooks quantum fluctuation theorem. J. Phys. A 40, F569 (2007) ADSzbMATHCrossRefGoogle Scholar
  94. 94.
    Talkner, P., Campisi, M., Hänggi, P.: Fluctuation theorems in driven open quantum systems. J. Stat. Mech. P02025 (2009) Google Scholar
  95. 95.
    Tasaki, H.: Jarzynski relations for quantum systems and some applications. arXiv:cond-mat/0009244 (2000)
  96. 96.
    Temme K, K., Wolf, M.M., Verstraete, F.: Stochastic exclusion processes versus coherent transport. arXiv:0912.0858
  97. 97.
    Weidlich, W.: Fluctuation-dissipation theorem for a class of stationary open systems. Z. Phys. 248, 234 (1971) MathSciNetADSCrossRefGoogle Scholar
  98. 98.
    Yukawa, S.: A quantum analogue of the Jarzynski equality. J. Phys. Soc. Jpn. 69, 2367 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratoire J. A. Dieudonné, UMR CNRS 6621Université de Nice Sophia-AntipolisNice Cedex 02France
  2. 2.Institut de Physique ThéoriqueCEA SaclayGif-sur-YvetteFrance

Personalised recommendations