Journal of Statistical Physics

, Volume 147, Issue 2, pp 424–435 | Cite as

Fractal Iso-Contours of Passive Scalar in Two-Dimensional Smooth Random Flows

  • Marija Vucelja
  • Gregory Falkovich
  • Konstantin S. Turitsyn


A passive scalar field was studied under the action of pumping, diffusion and advection by a 2D smooth flow with Lagrangian chaos. We present theoretical arguments showing that the scalar statistics are not conformally invariant and formulate a new effective semi-analytic algorithm to model scalar turbulence. We then carry out massive numerics of scalar turbulence, focusing on nodal lines. The distribution of contours over sizes and perimeters is shown to depend neither on the flow realization nor on the resolution (diffusion) scale r d for scales exceeding r d . The scalar isolines are found to be fractal/smooth at scales larger/smaller than the pumping scale. We characterize the statistics of isoline bending by the driving function of the Löwner map. That function is found to behave like diffusion with diffusivity independent of the resolution yet, most surprisingly, dependent on the velocity realization and time (beyond the time on which the statistics of the scalar is stabilized).


Mixing fluids Passive scalar Statistical geometry Turbulence 



This research was supported by the NSF grant PHY05-51164 at KITP, and by the grants of BSF, ISF and Minerva foundation at the Weizmann Institute. We benefited from discussions with I. Binder, G. Boffetta, D. Dolgopyat, A. Celani, K. Khanin, J.P. Eckmann, S. Smirnov and C. Connaughton.


  1. 1.
    Balkovsky, E., Chertkov, M., Kolokolov, I., Lebedev, V.: Fourth-order correlation function of a randomly advected passive scalar. JETP Lett. 61, 1012 (1995) Google Scholar
  2. 2.
    Balkovsky, E., et al.: Large-scale properties of passive scalar advection. Phys. Fluids 11, 2269–2279 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of Boolean functions and applications to percolation. Publ. Math. IHES 90, 5–43 (1999) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bernard, D., et al.: Conformal invariance in two-dimensional turbulence. Nat. Phys. 2(2), 124–128 (2006) CrossRefGoogle Scholar
  6. 6.
    Bernard, D., et al.: Inverse turbulent cascades and conformally invariant curves. Phys. Rev. Lett. 98(2), 024501 (2007). doi: 10.1103/PhysRevLett.98.024501 ADSCrossRefGoogle Scholar
  7. 7.
    Berry, A.C.: The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Am. Math. Soc. 41, 122–136 (1941) CrossRefGoogle Scholar
  8. 8.
    Cardy, J.: Critical percolation in finite geometries. J. Phys. A 25, 201–206 (1992) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Cardy, J.: SLE for theoretical physicists. Ann. Phys. 318, 81–118 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Cardy, J., Ziff, R.: Exact results for the universal area distribution of clusters in percolation, Ising, and Potts models. J. Stat. Phys. 110, 1 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Catrakis, H.J., Dimotakis, P.E.: Scale distributions and fractal dimensions in turbulence. Phys. Rev. Lett. 77(18), 3795–3798 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    Celani, A., Lanotte, A., Mazzino, A., Vergassola, M.: Universality and saturation of intermittency in passive scalar turbulence. Phys. Rev. Lett. 84, 2385–2388 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    Constantin, P.: Geometric statistics in turbulence. SIAM Rev. 36(1), 73–98 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Esseen, C.G.: On the Liapunoff limit of error in the theory of probability. Arkiv Mat. Astron. Fysk. 28, 1–19 (1942) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Falkovich, G., Gawedzki, K., Vergassola, M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Falkovich, G., Musacchio, S.: Conformal invariance in inverse turbulent cascades. arXiv:1012.3868
  17. 17.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, New York (1968) zbMATHGoogle Scholar
  18. 18.
    Feller, W.: On the Berry–Esseen theorem. Probab. Theory Relat. Fields 10, 261–268 (1968) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Fereday, D.R., Haynes, P.H.: Scalar decay in two-dimensional chaotic advection and Batchelor-regime turbulence. Phys. Fluids 16(12), 4359–4370 (2004) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Gotoh, T., Nagaki, J., Kaneda, Y.: Passive scalar spectrum in the viscous-convective range in two-dimensional steady turbulence. Phys. Fluids 12(1), 155–168 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Gruzberg, I.A., Kadanoff, L.P.: The Loewner evolution: maps and shapes. J. Stat. Phys. 30, 8459–8469 (2004) MathSciNetGoogle Scholar
  22. 22.
    Jun, Y., Steinberg, V.: Mixing of passive tracers in the decay Batchelor regime of a channel flow. Phys. Fluids 22, 123101 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    Kennedy, T.: Computing the Loewner driving process of random curves in the half plane. J. Stat. Phys. 131, 803–819 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Nastrom, G., Gage, K.: The kinetic energy spectrum of large- and mesoscale atmospheric processes. Tellus, Ser. A 35, 383–386 (1983) ADSCrossRefGoogle Scholar
  25. 25.
    Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C.R. Acad. Sci. I Math. 333, 239–244 (2001) ADSzbMATHGoogle Scholar
  27. 27.
    Sreenivasan, K.R.: On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165–182 (1991) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marija Vucelja
    • 1
  • Gregory Falkovich
    • 2
  • Konstantin S. Turitsyn
    • 3
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations