Skip to main content
Log in

On the Merit of a Central Limit Theorem-based Approximation in Statistical Physics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The applicability conditions of a recently reported Central Limit Theorem-based approximation method in statistical physics are investigated and rigorously determined. The failure of this method at low and intermediate temperature is proved as well as its inadequacy to disclose quantum criticalities at fixed temperatures. Its high temperature predictions are in addition shown to coincide with those stemming from straightforward appropriate expansions up to (k B T)−2. Our results are clearly illustrated by comparing the exact and approximate temperature dependence of the free energy of some exemplary physical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The third low can be violated only for systems whose ground state degeneracy grows exponentially with the number of blocks.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1970), p. 298, Sect. 7.1.13

    Google Scholar 

  2. Barouch, E., McCoy, B.M., Dresden, M.: Statistical mechanics of the XY model. I. Phys. Rev. A 2, 1075–1092 (1970). For a modern formulation of the problem, see for example Iorgov, N., Shadura, V., Tykhyy, Y.: Spin operator matrix elements in the quantum Ising chain: fermion approach. J. Stat. Mech. P02028 (2011)

    Article  ADS  Google Scholar 

  3. Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics. Oxford University Press, Oxford (2007)

    Google Scholar 

  4. Campisi, M., Talkner, P., Hänggi, P.: Thermodynamics and fluctuation theorems for a strongly coupled open quantum system: an exactly solvable case. J. Phys. A, Math. Theor. 42, 392002–392014 (2009)

    Article  Google Scholar 

  5. Cat, D.T., Pucci, A., Wandelt, K.: Physics and Engineering of New Materials. Springer Proc. Physics. Springer, Berlin (2009)

    Book  Google Scholar 

  6. Fisher, M.E.: Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653–681 (1998)

    Article  ADS  MATH  Google Scholar 

  7. Gogolin, C., Müller, M.P., Eisert, J.: Absence of thermalization in nonintegrable systems. Phys. Rev. Lett. 106, 040401–040404 (2011)

    Article  ADS  Google Scholar 

  8. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Perseus Book Publ., Reading (1992)

    Google Scholar 

  9. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  10. Hartmann, M., Mahler, G., Hess, O.: Spectral densities and partition functions of modular quantum systems as derived from a central limit theorem. J. Stat. Phys. 119, 1139–1151 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Hartmann, M., Mahler, G., Hess, O.: Gaussian quantum fluctuations in interacting many particle systems. Lett. Math. Phys. 68, 103–112 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Hartmann, M., Mahler, G., Hess, O.: Local versus global thermal states: correlations and the existence of local temperatures. Phys. Rev. E 70, 066148–066159 (2004)

    Article  ADS  Google Scholar 

  13. Hartmann, M., Mahler, G., Hess, O.: Existence of temperature on the nanoscale. Phys. Rev. Lett. 93, 080402–080405 (2004)

    Article  ADS  Google Scholar 

  14. Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004)

    Article  ADS  Google Scholar 

  15. Kubo, R.: Thermodynamics. North-Holland, Amsterdam (1968)

    Google Scholar 

  16. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Prokof’ev, N.V., Stamp, P.C.E.: Theory of the spin bath. Rep. Prog. Phys. 63, 669–726 (2000)

    Article  ADS  Google Scholar 

  18. Rançon, A., Dupuis, N.: Nonperturbative renormalization group approach to the Bose-Hubbard model. Phys. Rev. B 83, 172501–172504 (2011)

    Article  ADS  Google Scholar 

  19. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  20. Sadler, L.E., Higbie, J.M., Leslie, S.R., Vengalattore, M., Stamper-Kurn, D.M.: Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate. Nature 443, 312–315 (2006)

    Article  ADS  Google Scholar 

  21. Smacchia, P., Amico, L., Facchi, P., Fazio, R., Florio, G., Pascazio, S., Vedral, V.: Statistical mechanics of the cluster-Ising model. quant-ph/1105.0853v2 (2011)

  22. Suenaga, K., Koshino, M.: Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090 (2010)

    Article  ADS  Google Scholar 

  23. Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99, 220405–220408 (2007)

    Article  ADS  Google Scholar 

  24. Werpachowska, A.: Exact and approximate methods of calculating the sum of states for noninteracting classical and quantum particles occupying a finite number of modes. Phys. Rev. E 84, 041125–041132 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

OL acknowledges the partial support from grants NSh-4172.2010.2, RFBR-11-02-00778, RFBR-10-02-01398 and from the Ministry of Education and Science of the Russian Federation under contracts No. 02.740.11.0239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Leggio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leggio, B., Lychkovskiy, O. & Messina, A. On the Merit of a Central Limit Theorem-based Approximation in Statistical Physics. J Stat Phys 146, 1274–1287 (2012). https://doi.org/10.1007/s10955-012-0442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0442-9

Keywords

Navigation