Advertisement

Journal of Statistical Physics

, Volume 149, Issue 2, pp 203–219 | Cite as

The Influence of T Cell Development on Pathogen Specificity and Autoreactivity

  • Andrej Košmrlj
  • Mehran KardarEmail author
  • Arup K. ChakrabortyEmail author
Article

Abstract

T cells orchestrate adaptive immune responses upon activation. T cell activation requires sufficiently strong binding of T cell receptors on their surface to short peptides derived from foreign proteins bound to protein products of the major histocompatibility (MHC) gene products, which are displayed on the surface of antigen presenting cells. T cells can also interact with peptide-MHC complexes, where the peptide is derived from host (self) proteins. A diverse repertoire of relatively self-tolerant T cell receptors is selected in the thymus. We study a model, computationally and analytically, to describe how thymic selection shapes the repertoire of T cell receptors, such that T cell receptor recognition of pathogenic peptides is both specific and degenerate. We also discuss the escape probability of autoimmune T cells from the thymus.

Keywords

Statistical mechanics Thymic selection T cell pathogen specificity Autoimmune T cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhalerao, J., Bowcock, A.M.: The genetics of psoriasis: a complex disorder of the skin and immune system. Hum. Mol. Genet. 7, 1537–1545 (1998) CrossRefGoogle Scholar
  2. 2.
    Borghans, J.A., Noest, A.J., De Boer, R.J.: Thymic selection does not limit the individual MHC diversity. Eur. J. Immunol. 33, 3353–3358 (2003) CrossRefGoogle Scholar
  3. 3.
    Bousso, P., Bhakta, N.R., Lewis, R.S., Robey, E.: Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: The effects of thymic selection on the range of T cell cross-reactivity. Eur. J. Immunol. 35, 3452–3459 (2005) CrossRefGoogle Scholar
  5. 5.
    Chessman, D., et al.: Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 28, 822–832 (2008) CrossRefGoogle Scholar
  6. 6.
    Daniels, M.A., et al.: Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    Deeks, S.G., Walker, B.D.: Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27, 406–416 (2007) CrossRefGoogle Scholar
  8. 8.
    Detours, V., Perelson, A.S.: Explaining high alloreactivity as a quantitative consequence of affinity-driven thymocyte selection. Proc. Natl. Acad. Sci. USA 96, 5153–5158 (1999) ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Detours, V., Mehr, R., Perelson, A.S.: A quantitative theory of affinity-driven T cell repertoire selection. J. Theor. Biol. 200, 389–403 (1999) CrossRefGoogle Scholar
  10. 10.
    Eisen, H.N., Chakraborty, A.K.: Evolving concepts of specificity in immune reactions. Proc. Natl. Acad. Sci. USA 107, 22373–22380 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Flicek, P., et al.: Ensembl 2008. Nucleic Acids Res. 36, D707–D714 (2008) CrossRefGoogle Scholar
  12. 12.
    Hogquist, K.A., Baldwin, T.A., Jameson, S.C.: Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005) CrossRefGoogle Scholar
  13. 13.
    Huseby, E.S., et al.: How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005) CrossRefGoogle Scholar
  14. 14.
    Huseby, E.S., Crawford, F., White, J., Marrack, P., Kappler, J.W.: Interface-disrupting amino acids establish specificity between T cell receptors and complexes of major histocompatibility complex and peptide. Nat. Immunol. 7, 1191–1199 (2006) CrossRefGoogle Scholar
  15. 15.
    Janeway, C.: Immunobiology: The Immune System in Health and Disease, 6th edn. Garland, New York (2005) Google Scholar
  16. 16.
    Kardar, M.: Phase transitions in new solvable Hamiltonians by a Hamiltonian minimization. Phys. Rev. Lett. 51, 523–526 (1983) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Košmrlj, A., Jha, A.K., Huseby, E.S., Kardar, M., Chakraborty, A.K.: How the thymus designs antigen-specific and self-tolerant T cell receptor sequences. Proc. Natl. Acad. Sci. USA 105, 16671–16676 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Košmrlj, A., Chakraborty, A.K., Kardar, M., Shakhnovich, E.I.: Thymic selection of T-cell receptors as an extreme value problem. Phys. Rev. Lett. 103, 068103 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    Košmrlj, A., et al.: Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature 465, 350–354 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    Migueles, S.A., et al.: HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl. Acad. Sci. USA 97, 2709–2714 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    Miyazawa, S., Jernigan, R.L.: Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256, 623–644 (1996) CrossRefGoogle Scholar
  22. 22.
    Moszer, I., Glaser, P., Danchin, A.: Subtilist: a relational database for the Bacillus subtilis genome. Microbiology 141(Pt 2), 261–268 (1995) CrossRefGoogle Scholar
  23. 23.
    Naeher, D., et al.: A constant affinity threshold for T cell tolerance. J. Exp. Med. 204, 2553–2559 (2007) CrossRefGoogle Scholar
  24. 24.
    Park, J.M., Deem, M.W.: Correlations in the T-cell response to altered peptide ligands. Phys. A, Stat. Mech. Appl. 341, 455–470 (2004) CrossRefGoogle Scholar
  25. 25.
    Scherer, A., Noest, A., de Boer, R.J.: Activation-threshold tuning in an affinity model for the T-cell repertoire. Proc. Biol. Sci. 271, 609–616 (2004) CrossRefGoogle Scholar
  26. 26.
    Siggs, O.M., Makaroff, L.E., Liston, A.: The why and how of thymocyte negative selection. Curr. Opin. Immunol. 18, 175–183 (2006) CrossRefGoogle Scholar
  27. 27.
    Unanue, E.R.: Antigen-presenting function of the macrophage. Annu. Rev. Immunol. 2, 395–428 (1984) CrossRefGoogle Scholar
  28. 28.
    von Boehmer, H., et al.: Thymic selection revisited: how essential is it? Immunol. Rev. 191, 62–78 (2003) CrossRefGoogle Scholar
  29. 29.
    Werlen, G., Hausmann, B., Naeher, D., Palmer, E.: Signaling life and death in the thymus: timing is everything. Science 299, 1859–1863 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    Yang, M., Park, J.M., Deem, M.W.: Evolutionary design in biological physics and materials science. Lect. Notes Phys. 704, 541–562 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    Zhou, H., Deem, M.W.: Sculpting the immunological response to dengue fever by polytopic vaccination. Vaccine 24, 2451–2459 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA
  2. 2.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Departments of Chemical Engineering, Chemistry, Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Ragon Institute of MGH, MIT, & HarvardBostonUSA

Personalised recommendations