Journal of Statistical Physics

, Volume 146, Issue 2, pp 330–358 | Cite as

Non-uniform Specification and Large Deviations for Weak Gibbs Measures

Article

Abstract

We establish bounds for the measure of deviation sets associated to continuous observables with respect to not necessarily invariant weak Gibbs measures. Under some mild assumptions, we obtain upper and lower bounds for the measure of deviation sets of some non-uniformly expanding maps, including quadratic maps and robust multidimensional non-uniformly expanding local diffeomorphisms. For that purpose, a measure theoretical weak form of specification is introduced and proved to hold for the robust classes of multidimensional non-uniformly expanding local diffeomorphisms and Viana maps.

Keywords

Non-uniform specification Large deviations Hyperbolic times Weak Gibbs measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alves, J.F., Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140, 351–398 (2000) CrossRefMATHADSMathSciNetGoogle Scholar
  2. 2.
    Alves, J.F.: SRB measures for non-hyperbolic systems with multidimensional expansion. Ann. Sci. Éc. Norm. Super. 33, 1–32 (2000) MATHMathSciNetGoogle Scholar
  3. 3.
    Alves, J.F., Araújo, V., Saussol, B.: On the uniform hyperbolicity of some nonuniformly hyperbolic systems. Proc. Am. Math. Soc. 131, 1303–1309 (2003) CrossRefMATHGoogle Scholar
  4. 4.
    Alves, J.F., Freitas, J., Luzzatto, S., Vaienti, S.: From rates of mixing to recurrence times via large deviations. Preprint arXiv:1007.3771v1
  5. 5.
    Araújo, V., Pacífico, M.J.: Large deviations for non-uniformly expanding maps. J. Stat. Phys. 125, 415–457 (2006) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Araújo, V., Pacífico, M.J.: Physical measures for infinite-modal maps. Fundam. Math. 203(3), 211–262 (2009) CrossRefMATHGoogle Scholar
  7. 7.
    Alves, J., Viana, M.: Statistical stability for robust classes of maps with non-uniform expansion. Ergod. Theory Dyn. Syst. 22, 1–32 (2002) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Benedicks, M., Carleson, L.: On iterations of 1−ax 2 on (−1,1). Ann. Math. 122, 1–25 (1985) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Blokh, A.M.: Decomposition of dynamical systems on an interval. Usp. Mat. Nauk 38(5(233)), 179–180 (1983) MathSciNetGoogle Scholar
  10. 10.
    Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lect. Notes in Math., vol. 470. Springer, Berlin (1975) MATHGoogle Scholar
  12. 12.
    Bruin, H., Keller, G.: Equilibrium states for S-unimodal maps. Ergod. Theory Dyn. Syst. 18, 765–789 (1998) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Buzzi, J., Sarig, O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod. Theory Dyn. Syst. 23, 1383–1400 (2003) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Buzzi, J.: Specification on the interval. Trans. Am. Math. Soc. 349, 2737–2754 (1997) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Cao, Y.: Non-zero Lyapunov exponents and uniform hyperbolicity. Nonlinearity 16, 1473–1479 (2003) CrossRefMATHADSMathSciNetGoogle Scholar
  16. 16.
    Chung, Y.M.: Large deviations on Markov towers. Nonlinearity 24, 1229–1252 (2011) CrossRefMATHADSMathSciNetGoogle Scholar
  17. 17.
    Comman, H., Rivera-Letelier, J.: Large deviations principles for non-uniformly hyperbolic rational maps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15, 539–579 (1998) CrossRefADSGoogle Scholar
  18. 18.
    Hirayama, M., Sumi, N.: Hyperbolic measures with transverse intersections of stable and unstable manifolds. Preprint (2010) Google Scholar
  19. 19.
    Hu, H.: Decay of correlations for piecewise smooth maps with indifferent fixed points. Ergod. Theory Dyn. Syst. 24, 495–524 (2004) CrossRefMATHGoogle Scholar
  20. 20.
    Katok, A.: Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. IHÉS 51, 137–173 (1980) MATHMathSciNetGoogle Scholar
  21. 21.
    Kifer, Y.: Large deviations in dynamical systems and stochastic processes. Trans. Am. Math. Soc. 321(2), 505–524 (1990) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Kifer, Y., Newhouse, S.E.: A global volume lemma and applications. Isr. J. Math. 74(2-3), 209–223 (1991) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Keller, G., Nowicki, T.: Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps. Commun. Math. Phys. 149, 31–69 (1992) CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    Nowicki, T., Sands, D.: Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math. 132, 633–680 (1998) CrossRefMATHADSMathSciNetGoogle Scholar
  25. 25.
    Melbourne, I.: Large and moderate deviations for slowly mixing dynamical systems. Proc. Am. Math. Soc. 137, 1735–1741 (2009) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Melbourne, I., Nicol, M.: Large deviations for nonuniformly hyperbolic systems. Trans. Am. Math. Soc. 360, 6661–6676 (2008) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Oliveira, K., Viana, M.: Thermodynamical formalism for robust classes of potentials and non-uniformly hyperbolic maps. Ergod. Theory Dyn. Syst. 28, 501–533 (2008) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Oliveira, K.: Every expanding measure has the nonuniform specification property. Proc. Am. Math. Soc. (2011). doi:10.1090/S0002-9939-2011-10985-7 Google Scholar
  29. 29.
    Oliveira, K., Tian, X.: Nonuniform hyperbolicity and nonuniform specification. Preprint arXiv:1102.1652
  30. 30.
    Pinheiro, V.: Expanding measures. Ann. Inst. Henri Poincaré, Anal. Non Linéaire (2011, to appear) Google Scholar
  31. 31.
    Pfister, C.-E., Sullivan, W.: Large deviations estimates for dynamical systems without the specification property. Application to the beta-shifts. Nonlinearity 18, 237–261 (2005) CrossRefMATHADSMathSciNetGoogle Scholar
  32. 32.
    Pollicott, M., Sharp, R.: Large deviations for intermittent maps. Nonlinearity 22, 2079–2092 (2009) CrossRefMATHADSMathSciNetGoogle Scholar
  33. 33.
    Rey-Bellet, L., Young, L.-S.: Large deviations in non-uniformly hyperbolic dynamical systems. Ergod. Theory Dyn. Syst. 28(2), 587–612 (2008) CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Ruelle, D.: A measure associated with Axiom A attractors. Am. J. Math. 98, 619–654 (1976) CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Sinai, Ya.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–69 (1972) CrossRefMATHADSMathSciNetGoogle Scholar
  36. 36.
    Saussol, B., Troubetzkoy, S., Vaienti, S.: Recurrence and Lyapunov exponents. Mosc. Math. J. 3, 189–203 (2003) MATHMathSciNetGoogle Scholar
  37. 37.
    Thompson, D.: Irregular sets, the beta-transformation and the almost specification property. Trans. Am. Math. Soc. (to appear) Google Scholar
  38. 38.
    Viana, M.: Multidimensional nonhyperbolic attractors. Publ. Math. IHÉS 85, 63–96 (1997) MATHMathSciNetGoogle Scholar
  39. 39.
    Varandas, P., Viana, M.: Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, 555–593 (2010) CrossRefMATHADSMathSciNetGoogle Scholar
  40. 40.
    Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982) CrossRefMATHGoogle Scholar
  41. 41.
    Yamamoto, K.: On the weaker forms of the specification property and their applications. Proc. Am. Math. Soc. 137, 3807–3814 (2009) CrossRefMATHGoogle Scholar
  42. 42.
    Young, L.-S.: Some large deviations for dynamical systems. Trans. Am. Math. Soc. 318, 525–543 (1990) CrossRefMATHGoogle Scholar
  43. 43.
    Yuri, M.: Thermodynamical formalism for countable to one Markov systems. Trans. Am. Math. Soc. 335, 2949–2971 (2003) CrossRefMathSciNetGoogle Scholar
  44. 44.
    Yuri, M.: Large deviations for countable to one Markov systems. Commun. Math. Phys. 258(2), 455–474 (2005) CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal da BahiaSalvadorBrazil

Personalised recommendations