Advertisement

Journal of Statistical Physics

, Volume 145, Issue 6, pp 1661–1673 | Cite as

A New Derivation of the Quantum Navier–Stokes Equations in the Wigner–Fokker–Planck Approach

  • Ansgar JüngelEmail author
  • José Luis López
  • Jesús Montejo–Gámez
Article

Abstract

A quantum Navier–Stokes system for the particle, momentum, and energy densities is formally derived from the Wigner–Fokker–Planck equation using a moment method. The viscosity term depends on the particle density with a shear viscosity coefficient which equals the quantum diffusion coefficient of the Fokker–Planck collision operator. The main idea of the derivation is the use of a so-called osmotic momentum operator, which is the sum of the phase-space momentum and the gradient operator. In this way, a Chapman–Enskog expansion of the Wigner function, which typically leads to viscous approximations, is avoided. Moreover, we show that the osmotic momentum emerges from local gauge theory.

Keywords

Quantum Navier–Stokes model Wigner–Fokker–Planck equations Moment method Osmotic momentum Local gauge transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arecchi, F., Bragard, J., Castellano, L.: Dissipative dynamics of an open Bose-Einstein condensate. Optics Commun. 179, 149–156 (2000) CrossRefADSGoogle Scholar
  2. 2.
    Arnold, A.: Mathematical properties of quantum evolution equations In: Allaire, G.. Arnold, A., Degond, P., Hou, T.Y. (eds.) Quantum Transport – Modelling, Analysis and Asymptotics. Lect. Notes Math., vol. 1946, pp. 45–109. Springer, Berlin (2008) Google Scholar
  3. 3.
    Arnold, A., Dhamo, E., Manzini, C.: The Wigner–Poisson–Fokker–Planck system: global-in-time solutions and dispersive effects. Ann. Inst. H. Poincaré, Anal. Non Linéaire 24, 645–676 (2007) CrossRefzbMATHADSMathSciNetGoogle Scholar
  4. 4.
    Arnold, A., López, J.L., Markowich, P., Soler, J.: An analysis of quantum Fokker–Planck models: a Wigner function approach. Rev. Mat. Iberoamer 20, 771–814 (2004) zbMATHCrossRefGoogle Scholar
  5. 5.
    Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954) CrossRefzbMATHADSGoogle Scholar
  6. 6.
    Brull, S., Méhats, F.: Derivation of viscous correction terms for the isothermal quantum Euler model. Z. Angew. Math. Mech. 90, 219–230 (2010) CrossRefzbMATHGoogle Scholar
  7. 7.
    Caldeira, A., Leggett, A.: Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983) CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. 8.
    Castella, F., Erdös, L., Frommlet, F., Markowich, P.: Fokker-Planck equations as scaling limits of reversible quantum systems. J. Stat. Phys. 100, 543–601 (2000) CrossRefzbMATHGoogle Scholar
  9. 9.
    Degond, P., Ringhofer, C.: Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys. 112, 587–628 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ferry, D., Zhou, J.-R.: Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. Phys. Rev. B 48, 7944–7950 (1993) CrossRefADSGoogle Scholar
  11. 11.
    Frampton, P.: Gauge Field Theories. Wiley-VCH, Berlin (2008) CrossRefzbMATHGoogle Scholar
  12. 12.
    Fuchs, P., Jüngel, A., von Renesse, M.: On the Lagrangian structure of quantum fluid models. Preprint, Vienna University of Technology. Online available at http://www.asc.tuwien.ac.at/index.php?id=132 (2011)
  13. 13.
    Gardner, C.: The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54, 409–427 (1994) CrossRefzbMATHADSMathSciNetGoogle Scholar
  14. 14.
    Gualdani, M.P., Jüngel, A.: Analysis of the viscous quantum hydrodynamic equations for semiconductors. Europ. J. Appl. Math. 15, 577–595 (2004) CrossRefGoogle Scholar
  15. 15.
    Huelga, S., Plenio, M.: Stochastic resonance phenomena in quantum many-body systems. Phys. Rev. Lett. 98, 170601 (2007) CrossRefADSGoogle Scholar
  16. 16.
    Jüngel, A.: Transport Equations for Semiconductors. Lect. Notes Phys., vol. 773. Springer, Berlin (2009) CrossRefGoogle Scholar
  17. 17.
    Jüngel, A.: Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J. Math. Anal. 42, 1025–1045 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Jüngel, A.: Dissipative quantum fluid models. Riv. Mat. Univ. Parma (2011, to appear) Google Scholar
  19. 19.
    Jüngel, A., Milišić, J.-P.: Full compressible Navier-Stokes equations for quantum fluids: derivation and numerical solution. Kinetic Related Models (2011, to appear) Google Scholar
  20. 20.
    Kostin, M.: On the Schrödinger–Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972) CrossRefADSGoogle Scholar
  21. 21.
    López, J.L.: Nonlinear Ginzburg–Landau-type approach to quantum dissipation. Phys. Rev. E 69, 026110 (2004) CrossRefADSGoogle Scholar
  22. 22.
    López, J.L., Montejo-Gámez, J.: A hydrodynamic approach to multidimensional dissipation-based Schrödinger models from quantum Fokker–Planck dynamics. Physica D 238, 622–644 (2009) CrossRefzbMATHADSMathSciNetGoogle Scholar
  23. 23.
    Manfredi, G., Hass, H.: Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316 (2001) CrossRefADSGoogle Scholar
  24. 24.
    Méhats, F., Pinaud, O.: An inverse problem in quantum statistical physics. J. Stat. Phys. 140, 565–602 (2010) CrossRefzbMATHADSMathSciNetGoogle Scholar
  25. 25.
    Mosna, R., Hamilton, I., Site, L. Delle: Variational approach to dequantization. J. Phys. A: Math. Gen. 39, L229–L235 (2006) CrossRefzbMATHADSGoogle Scholar
  26. 26.
    Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ansgar Jüngel
    • 1
    Email author
  • José Luis López
    • 2
  • Jesús Montejo–Gámez
    • 2
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria
  2. 2.Departamento de Matemática Aplicada, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations