Journal of Statistical Physics

, Volume 145, Issue 6, pp 1524–1545 | Cite as

Solution of the Fokker-Planck Equation with a Logarithmic Potential

Article

Abstract

We investigate the diffusion of particles in an attractive one-dimensional potential that grows logarithmically for large |x| using the Fokker-Planck equation. An eigenfunction expansion shows that the Boltzmann equilibrium density does not fully describe the long-time limit of this problem. Instead this limit is characterized by an infinite covariant density. This non-normalizable density yields the mean square displacement of the particles, which for a certain range of parameters exhibits anomalous diffusion. In a symmetric potential with an asymmetric initial condition, the average position decays anomalously slowly. This problem also has applications outside the thermal context, as in the diffusion of the momenta of atoms in optical molasses.

Keywords

Anomalous diffusion Fokker-Planck equation Logarithmic potential Ergodicity breaking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, J.: An Introduction to Infinite Ergodic Theory. Math. Surveys and Monographs, vol. 50. AMS, Providence (1997) MATHGoogle Scholar
  2. 2.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972) MATHGoogle Scholar
  3. 3.
    Bar, A., Kafri, Y., Mukamel, D.: Loop dynamics in DNA denaturation. Phys. Rev. Lett. 98, 038103 (2007) CrossRefADSGoogle Scholar
  4. 4.
    Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media—statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Bouchet, F., Dauxois, T.: Kinetics of anomalous transport and algebraic correlations in a long-range interacting system. J. Phys. Conf. Ser. 7, 34 (2005) CrossRefADSGoogle Scholar
  6. 6.
    Bouchet, F., Dauxois, T.: Prediction of anomalous diffusion and algebraic relaxations for long-range interacting systems, using classical statistical mechanics. Phys. Rev. E 72, 045103(R) (2005) CrossRefADSGoogle Scholar
  7. 7.
    Bray, A.J.: Random walks in logarithmic and power-law potentials, nonuniversal persistence, and vortex dynamics in the two-dimensional XY model. Phys. Rev. E 62, 103–112 (2000) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Castin, Y., Dalibard, J., Cohen-Tannoudji, C.: The limits of Sisyphus cooling. In: Moi, L., Gozzini, S., Gabbanini, C., Arimondo, E., Strumia, F. (eds.) Light Induced Kinetic Effects on Atoms, Ions and Molecules. ETS Editrice, Pisa (1991) Google Scholar
  9. 9.
    Chavanis, P.H., Lemou, M.: Kinetic theory of point vortices in two dimensions: analytical results and numerical simulations. Eur. Phys. J. B 59, 217–247 (2007) CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    Chavanis, P.H., Mannella, R.: Self-gravitating Brownian particles in two dimensions: the case of n=2 particles. Eur. Phys. J. B 78, 139–165 (2010) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Cohen, A.E.: Control of nanoparticles with arbitrary two-dimensional force fields. Phys. Rev. Lett. 94, 118102 (2005) CrossRefADSGoogle Scholar
  12. 12.
    Dechant, A., Lutz, E., Kessler, D.A., Barkai, E.: Fluctuations of time averages for Langevin dynamics in a binding force field (2011). arXiv:1105.5496
  13. 13.
    Douglas, P., Gergamini, S., Renzoni, F.: Tunable Tsallis distributions in dissipative optical lattices. Phys. Rev. Lett. 96, 110601 (2006) CrossRefADSGoogle Scholar
  14. 14.
    Fogedby, H.C., Metzler, R.: DNA bubble dynamics as a quantum Coulomb problem. Phys. Rev. Lett. 98, 070601 (2007) CrossRefADSGoogle Scholar
  15. 15.
    Fogedby, H.C., Metzler, R.: Dynamics of DNA breathing: weak noise analysis, finite time singularity, and mapping onto the quantum Coulomb problem. Phys. Rev. E 76, 061915 (2007) CrossRefADSGoogle Scholar
  16. 16.
    Gradshteyn, I.S., Rhysik, I.M.: Table of Integrals, Series and Products, 4th edn. Academic Press, New York (1965) Google Scholar
  17. 17.
    Hirschberg, O., Mukamel, D., Schütz, G.M.: Approach to equilibrium of diffusion in a logarithmic potential (2011). arXiv:1106.0456
  18. 18.
    Kessler, D.A., Barkai, E.: Infinite invariant densities for anomalous diffusion in optical lattices and other logarithmic potentials. Phys. Rev. Lett. 105, 120602 (2010) CrossRefADSGoogle Scholar
  19. 19.
    Kessler, D.A., Ner, Z., Sander, L.M.: Front propagation: precursors, cutoffs, and structural stability. Phys. Rev. E 58, 107–114 (1998) CrossRefADSGoogle Scholar
  20. 20.
    Korabel, N., Barkai, E.: Pesin-type identity for intermittent dynamics with a zero Lyaponov exponent. Phys. Rev. Lett. 102, 050601 (2009) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Levine, E., Mukamel, D., Schütz, G.M.: Long-range attraction between probe particles mediated by a driven fluid. Europhys. Lett. 70, 565 (2005) CrossRefADSGoogle Scholar
  22. 22.
    Lutz, E.: Power-law tail distributions and nonergodicity. Phys. Rev. Lett. 93, 190602 (2004) CrossRefADSGoogle Scholar
  23. 23.
    Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924 (1969) CrossRefADSGoogle Scholar
  24. 24.
    Marksteiner, S., Ellinger, K., Zoller, P.: Anomalous diffusion and levy walks in optical lattices. Phys. Rev. A 53, 3409–3430 (1996) CrossRefADSGoogle Scholar
  25. 25.
    Martin, E., Behn, U., Germano, G.: First-passage and first-exit times of a Bessel-like stochastic process. Phys. Rev. E 83, 051115 (2011) CrossRefADSGoogle Scholar
  26. 26.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000) CrossRefMATHADSMathSciNetGoogle Scholar
  27. 27.
    Risken, H.: The Fokker-Planck Equation, 2nd edn. Springer, Berlin (1996) MATHGoogle Scholar
  28. 28.
    Schehr, G., Le Doussal, P.: Extreme value statistics from the real space renormalization group: Brownian motion, Bessel processes and continuous time random walks. J. Stat. Mech.: Theory Exp. 2010, P01009 (2010) CrossRefGoogle Scholar
  29. 29.
    Schiff, J., Kessler, D.A.: Universal Gaussian falloff in soliton tails. Phys. Rev. E 58, 7924–7927 (1998) CrossRefADSGoogle Scholar
  30. 30.
    Thaler, M.: Transformations on [0,1] with infinite invariant-measures. Isr. J. Math. 46, 67–96 (1983) CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Wu, L.A., Wu, S.S., Segal, D.: Looking into DNA breathing dynamics via quantum physics. Phys. Rev. E 79, 061901 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Dechant
    • 1
  • E. Lutz
    • 1
  • E. Barkai
    • 2
  • D. A. Kessler
    • 2
  1. 1.Department of PhysicsUniversity of AugsburgAugsburgGermany
  2. 2.Department of PhysicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations