Advertisement

Journal of Statistical Physics

, Volume 145, Issue 2, pp 253–264 | Cite as

Length-Scale Dependence of Hydration Free Energy: Effect of Solute Charge

  • Jihang Wang
  • Dusan BratkoEmail author
  • Alenka LuzarEmail author
Article

Abstract

Size and curvature are important determinants of particle wettability, in addition to surface chemistry and texture. Hydration free energy of a nonpolar solute scales with volume for small solutes and with surface area for larger ones. If the solute acquires a surface charge, the scaling regimes can be affected, with size-dependence of the charge playing a critical role. For isolated particles grown at fixed surface charge density, the Born approximation gives scaling of hydration free energy with volume. We consider a distinctly different but practically important scenario, where the charged solute and surrounding counterions are dissolved together. For this process, our molecular simulations demonstrate the electrostatic contribution to the solvation free energy, calculated per unit area of the solute, to be virtually independent of solute size. We explain this behavior in terms of counterion shielding effect on the curvature-dependent solute energy in the dehydrated state, an effect closely balanced by the influence of dielectric screening in water. As a result, for moderate surface charge densities of the solute, the net electrostatic contribution is dominated by counterion solvation, and scales with solute surface area independently of the ionic strength in the solution.

Keywords

Ionic solute Constant charge density Aqueous solvation Free energy Long-range correlations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hummer, G., Garde, S., Garcia, A.E., Pohorille, A., Pratt, L.R.: An information theory model of hydrophobic interactions. Proc. Natl. Acad. Sci. USA 93(17), 8951–8955 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    Luzar, A.: General discussion. Faraday Discuss. 103, 203–226 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    Lum, K., Chandler, D., Weeks, J.D.: Hydrophobicity at small and large length scales. J. Phys. Chem. B 103(22), 4570–4577 (1999) CrossRefGoogle Scholar
  4. 4.
    Ashbaugh, H.S., Paulaitis, M.E.: Effect of solute size and solute-water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 123(43), 10721–10728 (2001) CrossRefGoogle Scholar
  5. 5.
    Ashbaugh, H.S., Pratt, L.R.: Colloquium: Scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 78(1), 159–178 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    Rajamani, S., Truskett, T.M., Garde, S.: Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover. Proc. Natl. Acad. Sci. USA 102(27), 9475–9480 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    Stewart, M.C., Evans, R.: Wetting and drying at a curved substrate: Long-ranged forces. Phys. Rev. E 71(1), 011602 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    Varilly, P., Patel, A.J., Chandler, D.: An improved coarse-grained model of solvation and the hydrophobic effect. J. Chem. Phys. 134, 074109 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    Stillinger, F.H.: Structure in aqueous solutions of nonpolar solutes from the standpoint of Scaled-Particle theory. J. Solution Chem. 2, 141 (1973) CrossRefGoogle Scholar
  10. 10.
    Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    Graziano, G.: Scaled particle theory study of the length scale dependence of cavity thermodynamics in different liquids. J. Phys. Chem. B 110(23), 11421–11426 (2006) CrossRefGoogle Scholar
  12. 12.
    Jamadagni, S.N., Godawat, R., Garde, S.: Hydrophobicity of proteins and interfaces: Insights from density fluctuations. Annu. Rev. Chem. Biomol. Eng. 2, 147–171 (2011) CrossRefGoogle Scholar
  13. 13.
    Wu, J.Z.: Solvation of a spherical cavity in simple liquids: Interpolating between the limits. J. Phys. Chem. B 113(19), 6813–6818 (2009) CrossRefGoogle Scholar
  14. 14.
    Huang, D.M., Geissler, P.L., Chandler, D.: Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105(28), 6704–6709 (2001) CrossRefGoogle Scholar
  15. 15.
    Huang, D.M., Chandler, D.: Cavity formation and the drying transition in the Lennard-Jones fluid. Phys. Rev. E 61(2), 1501–1506 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    Lynden-Bell, R.M., Giovambattista, N., Debenedetti, P.G., Head-Gordon, T., Rossky, P.J.: Hydrogen bond strength and network structure effects on hydration of non-polar molecules. Phys. Chem. Chem. Phys. 13(7), 2748–2757 (2011) CrossRefGoogle Scholar
  17. 17.
    Ashbaugh, H.S.: Blowing bubbles in Lennard-Jonesium along the saturation curve. J. Chem. Phys. 130(20), 240517 (2009) CrossRefGoogle Scholar
  18. 18.
    Chothia, C.: Hydrophobic bonding and accessible surface-area in proteins. Nature 248(5446), 338–339 (1974) ADSCrossRefGoogle Scholar
  19. 19.
    Eisenberg, D., McLachlan, A.D.: Solvation energy in protein folding and binding. Nature 319(6050), 199–203 (1986) ADSCrossRefGoogle Scholar
  20. 20.
    Wagoner, J.A., Baker, N.A.: Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms. Proc. Natl. Acad. Sci. USA 103(22), 8331–8336 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    Sharp, K.A., Nicholls, A., Fine, R.F., Honig, B.: Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252(5002), 106–109 (1991) ADSCrossRefGoogle Scholar
  22. 22.
    Wang, J.H., Bratko, D., Luzar, A.: Probing surface tension additivity on chemically heterogeneous surfaces: A molecular approach. Proc. Natl. Acad. Sci. 108, 6374–6379 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    Dong, F., Wagoner, J.A., Baker, N.A.: Assessing the performance of implicit solvation models at a nucleic acid surface. Phys. Chem. Chem. Phys. 10(32), 4889–4902 (2008) CrossRefGoogle Scholar
  24. 24.
    Fennell, C.J., Kehoe, C.W., Dill, K.A.: Modeling aqueous solvation with semi-explicit assembly. Proc. Natl. Acad. Sci. USA 108(8), 3234–3239 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    Hummer, G., Pratt, L.R., Garcia, A.E.: Ion sizes and finite-size corrections for ionic-solvation free energies. J. Chem. Phys. 107(21), 9275–9277 (1997) ADSCrossRefGoogle Scholar
  26. 26.
    Rajamani, S., Ghosh, T., Garde, S.: Size dependent ion hydration, its asymmetry, and convergence to macroscopic behavior. J. Chem. Phys. 120(9), 4457–4466 (2004) ADSCrossRefGoogle Scholar
  27. 27.
    Torrie, G.M., Patey, G.N.: Molecular-solvent model for an electrical double-layer—Asymmetric solvent effects. J. Phys. Chem. 97(49), 12909–12918 (1993) CrossRefGoogle Scholar
  28. 28.
    Torrie, G.M., Kusalik, P.G., Patey, G.N.: Molecular-solvent model for an electrical double-layer—Reference hypernetted-chain (rhnc) results for solvent structure at a charged surface. J. Chem. Phys. 88(12), 7826–7840 (1988) ADSCrossRefGoogle Scholar
  29. 29.
    Wu, J.Z., Bratko, D., Prausnitz, J.M.: Interaction between like-charged colloidal spheres in electrolyte solutions. Proc. Natl. Acad. Sci. USA 95(26), 15169–15172 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    Bratko, D., Luzar, A., Chen, S.H.: Electrostatic model for protein reverse micelle complexation. J. Chem. Phys. 89(1), 545–550 (1988) ADSCrossRefGoogle Scholar
  31. 31.
    Lynden-Bell, R.M., Rasiash, J.C.: From hydrophobic to hydrophilic behavior: A simulation study of solvation entropy and free energy of simple solutes. J. Chem. Phys. 107(6), 1981–1991 (1997) ADSCrossRefGoogle Scholar
  32. 32.
    Dzubiella, J., Hansen, J.P.: Competition of hydrophobic and Coulombic interactions between nanosized solutes. J. Chem. Phys. 121(11), 5514–5530 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    Born, M.: Volumes and heats of hydration of ions. Z. Phys. 1, 45–48 (1920) ADSCrossRefGoogle Scholar
  34. 34.
    Still, W.C., Tempczyk, A., Hawley, R.C., Hendrickson, T.: Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112(16), 6127–6129 (1990) CrossRefGoogle Scholar
  35. 35.
    Qiu, D., Shenkin, P.S., Hollinger, F.P., Still, W.C.: The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J. Phys. Chem. A 101(16), 3005–3014 (1997) CrossRefGoogle Scholar
  36. 36.
    McQuarrie, D.A., Simon, J.D.: Physical Chemistry: A Molecular Approach. University Science Books, Sausalito (1997) zbMATHGoogle Scholar
  37. 37.
    LyndenBell, R.M., Rasaiah, J.C.: From hydrophobic to hydrophilic behaviour: A simulation study of solvation entropy and free energy of simple solutes. J. Chem. Phys. 107(6), 1981–1991 (1997) ADSCrossRefGoogle Scholar
  38. 38.
    Mucha, M., Frigato, T., Levering, L.M., Allen, H.C., Tobias, D.J., Dang, L.X., Jungwirth, P.: Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions. J. Phys. Chem. B 109(16), 7617–7623 (2005) CrossRefGoogle Scholar
  39. 39.
    Wennerstrom, H., Jonsson, B., Linse, P.: The cell model for polyelectrolyte systems. Exact statistical mechanical relations, Monte Carlo simulations, and the Poisson-Boltzmann approximation. J. Chem. Phys. 76(9), 4665–4670 (1982) ADSCrossRefGoogle Scholar
  40. 40.
    Bratko, D., Lindman, B.: On counterion self-diffusion in micellar solutions. J. Phys. Chem. 89(8), 1437–1440 (1985) CrossRefGoogle Scholar
  41. 41.
    Lowen, H., Hansen, J.P., Madden, P.A.: Nonlinear counterion screening in colloidal suspensions. J. Chem. Phys. 98(4), 3275–3289 (1993) ADSCrossRefGoogle Scholar
  42. 42.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation, from Algorithms to Applications. Academic Press, San Diego (2002) Google Scholar
  43. 43.
    Bratko, D., Dolar, D.: Ellipsoidal model of poly-electrolyte solutions. J. Chem. Phys. 80(11), 5782–5789 (1984) ADSCrossRefGoogle Scholar
  44. 44.
    Ochterski, J.W.: Thermochemistry in Gaussian. Gaussian, Wallingford (2000) Google Scholar
  45. 45.
    Reif, M., Huenenberger, P.: Single ion Solvation. Experimental and Theoretical Approaches to Elusive Thermodynamic Quantities. RSC Publishing, Zurich (2011) Google Scholar
  46. 46.
    Joung, I.S., Cheatham, T.E.: Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J. Phys. Chem. B 113(40), 13279–13290 (2009) CrossRefGoogle Scholar
  47. 47.
    Linse, P.: Structure, phase stability, and thermodynamics in charged colloidal solutions. J. Chem. Phys. 113(10), 4359–4373 (2000) ADSCrossRefGoogle Scholar
  48. 48.
    Rouzina, I., Bloomfield, V.A.: Macroion attraction due to electrostatic correlation between screening counterions. 1. Mobile surface-adsorbed ions and diffuse ion cloud. J. Phys. Chem. 100(23), 9977–9989 (1996) CrossRefGoogle Scholar
  49. 49.
    Athawale, M.V., Jamadagni, S.N., Garde, S.: How hydrophobic hydration responds to solute size and attractions: Theory and simulations. J. Chem. Phys. 131(11), 115102 (2009) ADSCrossRefGoogle Scholar
  50. 50.
    Zangi, R., Berne, B.J.: Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. J. Phys. Chem. B 110(45), 22736–22741 (2006) CrossRefGoogle Scholar
  51. 51.
    Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91(24), 6269–6271 (1987) CrossRefGoogle Scholar
  52. 52.
    Smith, W., Forester, T.R.: DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. J. Mol. Graph. 14(3), 136–141 (1996) CrossRefGoogle Scholar
  53. 53.
    Spohr, E.: Molecular simulation of the electrochemical double layer. Electrochim. Acta 44(11), 1697–1705 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations