Advertisement

Journal of Statistical Physics

, Volume 145, Issue 3, pp 686–695 | Cite as

The Combined Effect of Connectivity and Dependency Links on Percolation of Networks

  • Amir BashanEmail author
  • Shlomo Havlin
Article

Abstract

Percolation theory is extensively studied in statistical physics and mathematics with applications in diverse fields. However, the research is focused on systems with only one type of links, connectivity links. We review a recently developed mathematical framework for analyzing percolation properties of realistic scenarios of networks having links of two types, connectivity and dependency links. This formalism was applied to study Erdős-Rényi (ER) networks that include also dependency links. For an ER network with average degree \(\bar{k}\) that is composed of dependency clusters of size s, the fraction of nodes that belong to the giant component, P , is given by \(P_{\infty}=p^{s-1}[1-\exp{(-\bar{k}pP_{\infty})} ]^{s}\) where 1−p is the initial fraction of randomly removed nodes. Here, we apply the formalism to the study of random-regular (RR) networks and find a formula for the size of the giant component in the percolation process: P =p s−1(1−r k ) s where r is the solution of r=p s (r k−1−1)(1−r k )+1, and k is the degree of the nodes. These general results coincide, for s=1, with the known equations for percolation in ER and RR networks respectively without dependency links. In contrast to s=1, where the percolation transition is second order, for s>1 it is of first order. Comparing the percolation behavior of ER and RR networks we find a remarkable difference regarding their resilience. We show, analytically and numerically, that in ER networks with low connectivity degree or large dependency clusters, removal of even a finite number (zero fraction) of the infinite network nodes will trigger a cascade of failures that fragments the whole network. Specifically, for any given s there exists a critical degree value, \(\bar{k}_{\min}\), such that an ER network with \(\bar{k}\leq \bar{k}_{\min}\) is unstable and collapse when removing even a single node. This result is in contrast to RR networks where such cascades and full fragmentation can be triggered only by removal of a finite fraction of nodes in the network.

Keywords

Percolation Networks Cascade of failures Dependency links 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Essam, J.W.: Percolation theory. Rep. Prog. Phys. 43, 833 (1980) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Kesten, H.: Percolation Theory for Mathematicians. Birkhäuser, Boston (1982) zbMATHGoogle Scholar
  3. 3.
    Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108, 489 (1987) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Kirkaptrick, S.: Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973) ADSCrossRefGoogle Scholar
  5. 5.
    Bunde, A., Havlin, S.: Fractals and Disordered Systems. Springer, Berlin (1991) zbMATHGoogle Scholar
  6. 6.
    Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Tailor & Francis, London (1992) Google Scholar
  7. 7.
    Domb, C., Schneider, T., Stoll, E.: Cluster shapes in lattice gases and percolation. J. Phys. A, Math. Gen. 8, L90 (1975) ADSCrossRefGoogle Scholar
  8. 8.
    Zallen, R.: The Physics of Amorphous Solids. Wiley, New York (1983) CrossRefGoogle Scholar
  9. 9.
    Bunde, A., Havlin, S., Porto, M.: Are branched polymers in the universality class of percolation? Phys. Rev. Lett. 74, 2714 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    Mackey, G., Jan, N.: Forest fires as critical phenomena. J. Phys. A 17, L757 (1984) ADSCrossRefGoogle Scholar
  11. 11.
    Grassberger, P.: On the spreading of two-dimensional percolation. J. Phys. A 18, L215 (1985) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature (London) 393, 440 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Barabási, A.L., Albert, R.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2006) Google Scholar
  16. 16.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, New York (2003) zbMATHGoogle Scholar
  17. 17.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Caldarelli, G.: Scale-Free Networks. Oxford University Press, Oxford (2007) zbMATHCrossRefGoogle Scholar
  19. 19.
    Cohen, R., Havlin, S.: Complex Networks, Structure, Robustness and Function. Cambridge University Press, Cambridge (2010) zbMATHGoogle Scholar
  20. 20.
    Caldarelli, G., Vespignani, A.: Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science. World Scientific, Singapore (2007) zbMATHGoogle Scholar
  21. 21.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2009) Google Scholar
  22. 22.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010) zbMATHGoogle Scholar
  23. 23.
    Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature (London) 406, 378 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    Newman, M.E.J., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006) zbMATHGoogle Scholar
  25. 25.
    Barthelemy, M.: Spatial networks. Phys. Rep. 499, 1 (2011) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Resilience of the Internet to random breakdowns. Phys. Rev. Lett. 85, 4626 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Breakdown of the Internet under intentional attack. Phys. Rev. Lett. 86, 3682 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    Gallos, L.K., Cohen, R., Argyrakis, P., Bunde, A., Havlin, S.: Stability and topology of scale-free networks under attack and defense strategies. Phys. Rev. Lett. 94, 188701 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468 (2000) ADSCrossRefGoogle Scholar
  30. 30.
    Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    Schneider, C.M., Moreira, A.A., Andrade, J.S. Jr., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. USA 108, 3838 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65, 036104 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    Cohen, R., Havlin, S., ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    Chen, Y., Paul, G., Havlin, S., Liljeros, F., Stanley, H.E.: Finding a better immunization strategy. Phys. Rev. Lett. 101, 058701 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 465, 08932 (2010) Google Scholar
  36. 36.
    Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    Parshani, R., Buldyrev, S.V., Havlin, S.: Critical effect of dependency groups on the function of networks. Proc. Natl. Acad. Sci. USA 108, 1007 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    Bashan, A., Parshani, R., Havlin, S.: Percolation in networks composed of connectivity and dependency links. Phys. Rev. E 83, 051127 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E 83, 036116 (2011) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. arXiv:1010.5829
  41. 41.
    Huang, X., Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of interdependent networks under targeted attack. Phys. Rev. E (2011, in press). doi: 10.1103/PhysRevE.83.065101 Google Scholar
  42. 42.
    Hu, Y., Ksherim, B., Cohen, R., Havlin, S.: Percolation in interdependent and interconnected networks: abrupt change from second to first order transition. Preprint (2011) Google Scholar
  43. 43.
    Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002) MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Shao, J., Buldyrev, S.V., Cohen, R., Kitsak, M., Havlin, S., Stanley, H.E.: Fractal boundaries of complex networks. Europhys. Lett. 84, 48004 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    Shao, J., Buldyrev, S.V., Braunstein, L.A., Havlin, S., Stanley, H.E.: Structure of shells in complex networks. Phys. Rev. E 80, 036105 (2009) ADSCrossRefGoogle Scholar
  46. 46.
    Erdős, P., Rényi, A.: On random graphs I. Publ. Math. 6, 290 (1959) Google Scholar
  47. 47.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960) Google Scholar
  48. 48.
    Bollobás, B.: Random Graphs. Academic Press, London (1985) zbMATHGoogle Scholar
  49. 49.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Bar Ilan UniversityRamat GanIsrael

Personalised recommendations