Journal of Statistical Physics

, Volume 145, Issue 3, pp 686–695

# The Combined Effect of Connectivity and Dependency Links on Percolation of Networks

• Amir Bashan
• Shlomo Havlin
Article

## Abstract

Percolation theory is extensively studied in statistical physics and mathematics with applications in diverse fields. However, the research is focused on systems with only one type of links, connectivity links. We review a recently developed mathematical framework for analyzing percolation properties of realistic scenarios of networks having links of two types, connectivity and dependency links. This formalism was applied to study Erdős-Rényi (ER) networks that include also dependency links. For an ER network with average degree $$\bar{k}$$ that is composed of dependency clusters of size s, the fraction of nodes that belong to the giant component, P , is given by $$P_{\infty}=p^{s-1}[1-\exp{(-\bar{k}pP_{\infty})} ]^{s}$$ where 1−p is the initial fraction of randomly removed nodes. Here, we apply the formalism to the study of random-regular (RR) networks and find a formula for the size of the giant component in the percolation process: P =p s−1(1−r k ) s where r is the solution of r=p s (r k−1−1)(1−r k )+1, and k is the degree of the nodes. These general results coincide, for s=1, with the known equations for percolation in ER and RR networks respectively without dependency links. In contrast to s=1, where the percolation transition is second order, for s>1 it is of first order. Comparing the percolation behavior of ER and RR networks we find a remarkable difference regarding their resilience. We show, analytically and numerically, that in ER networks with low connectivity degree or large dependency clusters, removal of even a finite number (zero fraction) of the infinite network nodes will trigger a cascade of failures that fragments the whole network. Specifically, for any given s there exists a critical degree value, $$\bar{k}_{\min}$$, such that an ER network with $$\bar{k}\leq \bar{k}_{\min}$$ is unstable and collapse when removing even a single node. This result is in contrast to RR networks where such cascades and full fragmentation can be triggered only by removal of a finite fraction of nodes in the network.

## References

1. 1.
Essam, J.W.: Percolation theory. Rep. Prog. Phys. 43, 833 (1980)
2. 2.
Kesten, H.: Percolation Theory for Mathematicians. Birkhäuser, Boston (1982)
3. 3.
Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108, 489 (1987)
4. 4.
Kirkaptrick, S.: Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973)
5. 5.
Bunde, A., Havlin, S.: Fractals and Disordered Systems. Springer, Berlin (1991)
6. 6.
Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Tailor & Francis, London (1992) Google Scholar
7. 7.
Domb, C., Schneider, T., Stoll, E.: Cluster shapes in lattice gases and percolation. J. Phys. A, Math. Gen. 8, L90 (1975)
8. 8.
Zallen, R.: The Physics of Amorphous Solids. Wiley, New York (1983)
9. 9.
Bunde, A., Havlin, S., Porto, M.: Are branched polymers in the universality class of percolation? Phys. Rev. Lett. 74, 2714 (1995)
10. 10.
Mackey, G., Jan, N.: Forest fires as critical phenomena. J. Phys. A 17, L757 (1984)
11. 11.
Grassberger, P.: On the spreading of two-dimensional percolation. J. Phys. A 18, L215 (1985)
12. 12.
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature (London) 393, 440 (1998)
13. 13.
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)
14. 14.
Barabási, A.L., Albert, R.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)
15. 15.
Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2006) Google Scholar
16. 16.
Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, New York (2003)
17. 17.
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167 (2003)
18. 18.
Caldarelli, G.: Scale-Free Networks. Oxford University Press, Oxford (2007)
19. 19.
Cohen, R., Havlin, S.: Complex Networks, Structure, Robustness and Function. Cambridge University Press, Cambridge (2010)
20. 20.
Caldarelli, G., Vespignani, A.: Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science. World Scientific, Singapore (2007)
21. 21.
Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2009) Google Scholar
22. 22.
Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)
23. 23.
Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature (London) 406, 378 (2000)
24. 24.
Newman, M.E.J., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)
25. 25.
Barthelemy, M.: Spatial networks. Phys. Rep. 499, 1 (2011)
26. 26.
Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Resilience of the Internet to random breakdowns. Phys. Rev. Lett. 85, 4626 (2000)
27. 27.
Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Breakdown of the Internet under intentional attack. Phys. Rev. Lett. 86, 3682 (2001)
28. 28.
Gallos, L.K., Cohen, R., Argyrakis, P., Bunde, A., Havlin, S.: Stability and topology of scale-free networks under attack and defense strategies. Phys. Rev. Lett. 94, 188701 (2005)
29. 29.
Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468 (2000)
30. 30.
Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)
31. 31.
Schneider, C.M., Moreira, A.A., Andrade, J.S. Jr., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. USA 108, 3838 (2011)
32. 32.
Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65, 036104 (2002)
33. 33.
Cohen, R., Havlin, S., ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)
34. 34.
Chen, Y., Paul, G., Havlin, S., Liljeros, F., Stanley, H.E.: Finding a better immunization strategy. Phys. Rev. Lett. 101, 058701 (2008)
35. 35.
Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 465, 08932 (2010) Google Scholar
36. 36.
Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010)
37. 37.
Parshani, R., Buldyrev, S.V., Havlin, S.: Critical effect of dependency groups on the function of networks. Proc. Natl. Acad. Sci. USA 108, 1007 (2011)
38. 38.
Bashan, A., Parshani, R., Havlin, S.: Percolation in networks composed of connectivity and dependency links. Phys. Rev. E 83, 051127 (2011)
39. 39.
Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E 83, 036116 (2011)
40. 40.
Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. arXiv:1010.5829
41. 41.
Huang, X., Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of interdependent networks under targeted attack. Phys. Rev. E (2011, in press). doi: Google Scholar
42. 42.
Hu, Y., Ksherim, B., Cohen, R., Havlin, S.: Percolation in interdependent and interconnected networks: abrupt change from second to first order transition. Preprint (2011) Google Scholar
43. 43.
Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002)
44. 44.
Shao, J., Buldyrev, S.V., Cohen, R., Kitsak, M., Havlin, S., Stanley, H.E.: Fractal boundaries of complex networks. Europhys. Lett. 84, 48004 (2008)
45. 45.
Shao, J., Buldyrev, S.V., Braunstein, L.A., Havlin, S., Stanley, H.E.: Structure of shells in complex networks. Phys. Rev. E 80, 036105 (2009)
46. 46.
Erdős, P., Rényi, A.: On random graphs I. Publ. Math. 6, 290 (1959) Google Scholar
47. 47.
Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960) Google Scholar
48. 48.
Bollobás, B.: Random Graphs. Academic Press, London (1985)
49. 49.
Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)