Journal of Statistical Physics

, 144:1151 | Cite as

Current Reservoirs in the Simple Exclusion Process

  • A. De Masi
  • E. Presutti
  • D. Tsagkarogiannis
  • M. E. Vares
Article

Abstract

We consider the symmetric simple exclusion process in the interval [−N,N] with additional birth and death processes respectively on (NK,N], K>0, and [−N,−N+K). The exclusion is speeded up by a factor N2, births and deaths by a factor N. Assuming propagation of chaos (a property proved in a companion paper, De Masi et al., http://arxiv.org/abs/1104.3447) we prove convergence in the limit N→∞ to the linear heat equation with Dirichlet condition on the boundaries; the boundary conditions however are not known a priori, they are obtained by solving a non-linear equation. The model simulates mass transport with current reservoirs at the boundaries and the Fourier law is proved to hold.

Keywords

Hydrodynamic limits Fourier law Non-linear boundary processes 

References

  1. 1.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Non equilibrium current fluctuations in stochastic lattice gases. J. Stat. Phys. 123(2), 237–276 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Bodineau, T., Derrida, B.: Current large deviations for asymmetric exclusion processes with open boundaries. J. Stat. Phys. 123(2), 277–300 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Bodineau, T., Derrida, J.L., Lebowitz, B.: A diffusive system by a battery or a smoothly varying field. J. Stat. Phys. 141(4), 648–675 (2010) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    De Masi, A., Presutti, E., Tsagkarogiannis, D., Vares, M.E.: Truncated correlations in the stirring process with births and deaths. Preprint at http://arxiv.org/abs/1104.3447
  5. 5.
    Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the symmetric simple exclusion process. J. Stat. Phys. 107, 599–634 (2002) MathSciNetMATHCrossRefADSGoogle Scholar
  6. 6.
    Galves, A., Kipnis, C., Marchioro, C., Presutti, E.: Nonequilibrium measures which exhibit a temperature gradient: study of a model. Commun. Math. Phys. 81, 127–147 (1981) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Lawler, G., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. De Masi
    • 1
  • E. Presutti
    • 2
  • D. Tsagkarogiannis
    • 2
  • M. E. Vares
    • 3
  1. 1.Dipartimento di MatematicaUniversità di L’AquilaL’AquilaItaly
  2. 2.Dipartimento di MatematicaUniversità di Roma Tor VergataRomaItaly
  3. 3.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil

Personalised recommendations