Advertisement

Path Lengths in Turbulence

  • Nicholas T. Ouellette
  • Eberhard Bodenschatz
  • Haitao XuEmail author
Article

Abstract

By tracking tracer particles at high speeds and for long times, we study the geometric statistics of Lagrangian trajectories in an intensely turbulent laboratory flow. In particular, we consider the distinction between the displacement of particles from their initial positions and the total distance they travel. The difference of these two quantities shows power-law scaling in the inertial range. By comparing them with simulations of a chaotic but non-turbulent flow and a Lagrangian Stochastic model, we suggest that our results are a signature of turbulence.

Keywords

Turbulence Lagrangian statistics Single particle dispersion 

References

  1. 1.
    Arnèodo, A., et al.: Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100, 254504 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    Batchelor, G.K.: The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Meteorol. Soc. 76, 133–146 (1950) ADSCrossRefGoogle Scholar
  3. 3.
    Biferale, L., Bodenschatz, E., Cencini, M., Lanotte, A.S., Ouellette, N.T., Toschi, F., Xu, H.: Lagrangian structure functions in turbulence: a quantitative comparison between experiment and direct numerical simulation. Phys. Fluids 20, 065103 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Biferale, L., Boffetta, G., Celani, A., Devenish, B.J., Lanotte, A., Toschi, F.: Multiparticle dispersion in fully developed turbulence. Phys. Fluids. 17, 111701 (2005) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Bourgoin, M., Ouellette, N.T., Xu, H., Berg, J., Bodenschatz, E.: The role of pair dispersion in turbulent flow. Science 311, 835–838 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    Braun, W., De Lillo, F., Eckhardt, B.: Geometry of particle paths in turbulent flows. J. Turbul. 7, N62 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    Chertkov, M., Pumir, A., Shraiman, B.I.: Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11, 2394–2410 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Choi, Y., Park, Y., Lee, C.: Helicity and geometric nature of particle trajectories in homogeneous isotropic turbulence. Int. J. Heat Fluid Flow 31, 482–487 (2010) CrossRefGoogle Scholar
  9. 9.
    Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2004) zbMATHGoogle Scholar
  10. 10.
    Dombre, T., Frisch, U., Greene, J.M., Hénon, M., Mehr, A., Soward, A.M.: Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353–391 (1986) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Falkovich, G., Gawȩdzki, K., Vergassola, M.: Particles and field in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941) ADSGoogle Scholar
  13. 13.
    Lüthi, B., Ott, S., Berg, J., Mann, J.: Lagrangian multi-particle statistics. J. Turbul. 8, N45 (2007) CrossRefGoogle Scholar
  14. 14.
    Merrifield, S.T., Kelley, D.H., Ouellette, N.T.: Scale-dependent statistical geometry in two-dimensional flow. Phys. Rev. Lett. 104, 254501 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    Mordant, N., Crawford, A.M., Bodenschatz, E.: Experimental Lagrangian probability density function measurement. Physica D 193, 245–251 (2004) ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Ott, S., Mann, J.: An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422, 207–223 (2000) ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Ouellette, N.T., Xu, H., Bodenschatz, E.: A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. Fluids 40, 301–313 (2006) CrossRefGoogle Scholar
  18. 18.
    Ouellette, N.T., Xu, H., Bourgoin, M., Bodenschatz, E.: An experimental study of turbulent relative dispersion models. New J. Phys. 8, 109 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  20. 20.
    Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709–737 (1926) ADSCrossRefGoogle Scholar
  21. 21.
    Sapsis, T., Haller, G.: Instabilities in the dynamics of neutrally buoyant particles. Phys. Fluids 20, 017102 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    Sawford, B.L.: Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 3, 1577–1586 (1991) ADSCrossRefGoogle Scholar
  23. 23.
    Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–212 (1922) CrossRefGoogle Scholar
  24. 24.
    Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375–404 (2009) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Voth, G.A., La Porta, A., Crawford, A.M., Alexander, J., Bodenschatz, E.: Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121–160 (2002) ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Xu, H.: Tracking Lagrangian trajectories in position-velocity space. Meas. Sci. Technol. 19, 075105 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    Xu, H., Ouellette, N.T., Bodenschatz, E.: Curvature of Lagrangian trajectories in turbulence. Phys. Rev. Lett. 98, 050201 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    Xu, H., Ouellette, N.T., Bodenschatz, E.: Evolution of geometric structures in intense turbulence. New J. Phys. 10, 013012 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nicholas T. Ouellette
    • 1
  • Eberhard Bodenschatz
    • 2
    • 3
    • 4
  • Haitao Xu
    • 2
    Email author
  1. 1.Department of Mechanical Engineering & Materials ScienceYale UniversityNew HavenUSA
  2. 2.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  3. 3.Institute for Nonlinear DynamicsUniversity of GöttingenGöttingenGermany
  4. 4.Laboratory of Atomic and Solid State Physics and Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations