Journal of Statistical Physics

, Volume 145, Issue 2, pp 365–384 | Cite as

Correlated Tunneling in Hydrogen Bonds

Article

Abstract

We study the quantum nature of the protons participating in hydrogen bonds in several ice structures by analyzing the one particle density matrix. We find that in all cases, including ice Ih, the most common form of ice, and the high pressure phases, ice VIII, VII, and X, the system is ground-state dominated. However, while the dynamics is uncorrelated in the structures with standard asymmetric hydrogen bonds, such as ice Ih and VIII, local correlations among the protons characterize ice VII and, to a lesser extent, ice X in the so-called low barrier hydrogen bond regime. The correlations appear along the path to hydrogen bond symmetrization, when quantum fluctuations delocalize the proton on the two bond sides. The correlations derive from a strong requirement for local charge neutrality that favors concerted motion along the bonds. The resulting behavior deviates substantially from mean field theory, which would predict in ice VII coherent tunneling of the proton between the two bond sides, thereby causing an ionization catastrophe. Due to the correlations, the quantum state of the proton is entangled.

Keywords

Hydrogen bonding Proton tunneling High pressure ice phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreani, C., Colognesi, D., Mayers, J., Reiter, G., Senesi, R.: Adv. Phys. 54, 377 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    Soper, A., Benmore, C.: Phys. Rev. Lett. 101, 65502 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    Morrone, J.A., Car, R.: Phys. Rev. Lett. 101, 017801 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Bratos, S., Diraison, M., Tarjus, G., Leicknam, J.C.: Phys. Rev. A 45, 5556 (1992) ADSCrossRefGoogle Scholar
  5. 5.
    Ramirez, R., Lopez-Ciudad, T., P, P.K., Marx, D.: J. Chem. Phys. 121, 3973 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    Paesani, F., Iuchi, S., Voth, G.A.: J. Chem. Phys. 127, 074506 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    Habershon, S., Fanourgakis, G.S., Manolopoulos, D.E.: J. Chem. Phys. 129, 074501 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Beck, T.L.: Free Energy Calculations: Theory and Applications in Chemistry and Biology. Springer, Berlin (2007) (Chap. 11, p. 387) Google Scholar
  9. 9.
    Lin, L., Morrone, J.A., Car, R., Parrinello, M.: Phys. Rev. B 83, 220302(R) (2011) ADSGoogle Scholar
  10. 10.
    Bernal, J., Fowler, R.: J. Chem. Phys. 1, 515 (1933) ADSCrossRefGoogle Scholar
  11. 11.
    Pauling, L.: J. Am. Chem. Soc. 57, 2680 (1935) CrossRefGoogle Scholar
  12. 12.
    Stillinger, F., Schweizer, K.: J. Phys. Chem. 87, 4281 (1983) CrossRefGoogle Scholar
  13. 13.
    Schweizer, K., Stillinger, F.: Phys. Rev. B 29, 350 (1984) ADSCrossRefGoogle Scholar
  14. 14.
    Schweizer, K., Stillinger, F.: J. Chem. Phys. 80, 1230 (1984) ADSCrossRefGoogle Scholar
  15. 15.
    Benoit, M., Marx, D., Parrinello, M.: Nature 392, 258 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    Morrone, J.A., Lin, L., Car, R.: J. Chem. Phys. 130, 204511 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    Neto, A., Pujol, P., Fradkin, E.: Phys. Rev. B 74, 024302 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    Bramwell, S., Gingras, M.: Science 294, 1495 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    Feynman, R., Hibbs, A.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965) MATHGoogle Scholar
  20. 20.
    Chandler, D., Wolynes, P.: J. Chem. Phys. 74, 4078 (1981) ADSCrossRefGoogle Scholar
  21. 21.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Kohn, W., Sham, L.: Phys. Rev. 140, A1133 (1965) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Car, R., Parrinello, M.: Phys. Rev. Lett. 55, 2471 (1985) ADSCrossRefGoogle Scholar
  24. 24.
    Marx, D., Parrinello, M.: J. Chem. Phys. 104, 4077 (1996) ADSCrossRefGoogle Scholar
  25. 25.
    Tuckerman, M., Marx, D., Klein, M., Parrinello, M.: J. Chem. Phys. 104, 5579 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    Marx, D., Tuckerman, M., Martyna, G.: Comput. Phys. Commun. 118, 166 (1999) ADSMATHCrossRefGoogle Scholar
  27. 27.
    Morrone, J.A., Srinivasan, V., Sebastiani, D., Car, R.: J. Chem. Phys. 126, 234504 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    Benoit, M., Marx, D.: Chem. Phys. Chem. 6, 1738 (2005) CrossRefGoogle Scholar
  29. 29.
    Robertson, J., Ubbelohde, A.: Proc. R. Soc. Lond. Ser. A 170, 222 (1939) ADSMATHCrossRefGoogle Scholar
  30. 30.
    Lin, L., Morrone, J.A., Car, R., Parrinello, M.: Phys. Rev. Lett. 105, 110602 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    Bove, L.E., Klotz, S., Paciaroni, A., Sacchetti, F.: Phys. Rev. Lett. 103, 165901 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA
  3. 3.Department of ChemistryColumbia UniversityNew YorkUSA
  4. 4.Department of Chemistry and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations