Influence of Coupling Delay on Noise Induced Coherent Oscillations in Excitable Systems

  • Nikola Burić
  • Ines Grozdanović
  • Kristina Todorović
  • Nebojša Vasović
Article

Abstract

Influence of small time-delays in coupling between noisy excitable systems on the coherence resonance and self-induced stochastic resonance is studied. Parameters of delayed coupled deterministic excitable units are chosen such that the system has only one attractor, namely the stationary state, for any value of the coupling and the time-lag. Addition of white noise induces qualitatively different types of coherent oscillations, and we analyzed the influence of coupling time-delay on the properties of these coherent oscillations. The main conclusion is that time-lag τ≥1, but still smaller than the refractory period, and sufficiently strong coupling drastically change signal to noise ratio in the quantitative and qualitative way. An interval of noise values implies quite large signal to noise ratio and different types of noise induced coherence are greatly enhanced. We also observed coincident spiking for small noise intensity and time-lag proportional to the inter-spike interval of the coherent spike trains. On the other hand, time-lags τ<1 and/or weak coupling induce negligible changes in the properties of the stochastic coherence.

Keywords

Neurons Delay Noise 

References

  1. 1.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2005) Google Scholar
  2. 2.
    Mainen, Z.F., Sejnowski, T.J.: Science 268, 1503 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Phys. Rep. 392, 321 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    Horsthemke, W., Lefevr, R.: Noise Induced Transitions: Theory and Applications in Physics, Chemistry and Biology. Springer, Berlin (2007) Google Scholar
  5. 5.
    Gammaitini, L., Hängi, P., Jung, P., Marchesoni, F.: Rev. Mod. Phys. 70, 223 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    Lee DeVille, R.E., Vanden-Eijnden, E. Muratov, C.B.: Phys. Rev. E 72, 031105 (2005) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Borromeo, M., Giusepponi, S., Marchesoni, F.: Phys. Rev. E 74, 031121 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    Borromeo, M., Marchesoni, F.: Phys. Rev. E 75, 041106 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Kandel, V., Schwartz, J.H., Jessel, T.M.: Principles of Neural Sciences, 3rd edn. Elsevier, New York (1991) Google Scholar
  10. 10.
    Strogatz, S.H.: Nature (London) 394, 316 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    Burić, N., Todorović, D.: Phys. Rev. E 67, 066222 (2003) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Buric, N., Grozdanovic, I., Vasovic, N.: Chaos Solitons Fractals 23, 1221 (2005) MathSciNetADSMATHGoogle Scholar
  13. 13.
    Dhamala, M., Jirsa, V.K., Ding, M.: Phys. Rev. Lett. 92, 074104 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    Rossoni, E., Chen, Y., Ding, M., Feng, J.: Phys. Rev. E 71, 061904 (2005) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Wang, Q., Lu, Q., Gunrong, C.: Int. J. Bifurc. Chaos 18, 1189 (2008) MATHCrossRefGoogle Scholar
  16. 16.
    Liao, X., Mao, X.: Anal. Appl. 14, 165–185 (1996) MathSciNetMATHGoogle Scholar
  17. 17.
    Blythe, S., Mao, X., Liao, X.: J. Franklin Inst. 338, 481 (2001) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Guillouzic, S., L’Heureux, I., Longtin, A.: Phys. Rev. E 59, 3970 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    Burić, N., Todorović, K., Vasović, N.: Phys. Rev. E 78, 036211 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    Janson, N.B., Balanov, A.G., Schöll, E.: Phys. Rev. Lett. 93, 010601 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    Sainz-Trapaga, M., Masoller, C., Braun, M.A., Huber, M.T.: Phys. Rev. E 70, 031904 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    Buric, N., Todorovic, K., Vasovic, N.: Chaos Solitons Fractals 40, 2405 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Misono, M., Todo, T., Miyakawa, K.: J. Phys. Soc. Jpn. 78, 014802 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    Ohira, T., Sato, Y.: Phys. Rev. Lett. 82, 2811 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    Tsimrin, L.S., Pikovsky, A.: Phys. Rev. Lett. 87, 250602 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    Masoller, C.: Phys. Rev. Lett. 88, 034102 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    Masoller, C.: Phys. Rev. Lett. 90, 020601 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    Pikovsky, A.S., Kurths, J.: Phys. Rev. Lett. 78, 775–778 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Zhang, J., Yuan, Z., Wang, J., Zhou, T.: Phys. Rev. E 77, 021101 (2008) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Cabrera, J.L., Gorroñogoitia, J., de la Rubia, F.J.: Phys. Rev. E 66, 022101 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    Han, S.K., Yin, T.G., Postnov, V., Sosnovceva, O.V.: Phys. Rev. Lett. 83, 1771–1774 (1999) ADSCrossRefGoogle Scholar
  32. 32.
    Kistler, W., Gerner, W., Van Hemmen, J.: Neural Comput. 9, 1015–1045 (1997) CrossRefGoogle Scholar
  33. 33.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nikola Burić
    • 1
  • Ines Grozdanović
    • 2
  • Kristina Todorović
    • 3
  • Nebojša Vasović
    • 2
  1. 1.Institute of PhysicsUniversity of BeogradBeograd-ZemunSerbia
  2. 2.Department of Applied Mathematics, Faculty of Mining and GeologyUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Physics and Mathematics, Faculty of PharmacyUniversity of BelgradeBelgradeSerbia

Personalised recommendations