Journal of Statistical Physics

, 144:1308

Schloegl’s Second Model for Autocatalysis on a Cubic Lattice: Mean-Field-Type Discrete Reaction-Diffusion Equation Analysis

  • Chi-Jen Wang
  • Xiaofang Guo
  • Da-Jiang Liu
  • J. W. Evans
Article

Abstract

Schloegl’s second model for autocatalysis on a hypercubic lattice of dimension d≥2 involves: (i) spontaneous annihilation of particles at lattice sites with rate p; and (ii) autocatalytic creation of particles at vacant sites at a rate proportional to the number of diagonal pairs of particles on neighboring sites. Kinetic Monte Carlo simulations for a d=3 cubic lattice reveal a discontinuous transition from a populated state to a vacuum state as p increases above p=pe. However, stationary points, p=peq (≤pe), for planar interfaces separating these states depend on interface orientation. Our focus is on analysis of interface dynamics via discrete reaction-diffusion equations (dRDE’s) obtained from mean-field type approximations to the exact master equations for spatially inhomogeneous states. These dRDE can display propagation failure absent due to fluctuations in the stochastic model. However, accounting for this anomaly, dRDE analysis elucidates exact behavior with quantitative accuracy for higher-level approximations.

Keywords

Schloegl’s second model Generic two-phase coexistence Discrete reaction-diffusion equations Interface propagation 

References

  1. 1.
    Marro, J., Dickman, R.: Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge (1999) CrossRefGoogle Scholar
  2. 2.
    Hinrichsen, H.: Adv. Phys. 49, 815 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    Odor, G.: Rev. Mod. Phys. 76, 663 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Ziff, R.M., Gulari, E., Barshad, Y.: Phys. Rev. Lett. 56, 2553 (1986) ADSCrossRefGoogle Scholar
  5. 5.
    Evans, J.W., Miesch, M.S.: Phys. Rev. Lett. 66, 833 (1991) ADSCrossRefGoogle Scholar
  6. 6.
    Loscar, E., Albano, E.V.: Rep. Prog. Phys. 66, 1343 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    Liu, D.-J., Guo, X., Evans, J.W.: Phys. Rev. Lett. 98, 050601 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    Evans, J.W., Ray, T.R.: Phys. Rev. E 50, 4302 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    Goodman, R.H., Graff, D.S., Sander, L.M., Leroux-Hugon, P., Clément, E.: Phys. Rev. E 52, 5904 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    Machado, E., Buendia, G.M., Rikvold, P.A.: Phys. Rev. E 71, 031603 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    Guo, X., Liu, D.-J., Evans, J.W.: J. Chem. Phys. 130, 074106 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    Toom, A.L.: In: Dobrushin, D.L., Sinai, Y.G. (eds.) Multicomponent Random Systems. Advances in Probability and Related Topics, vol. 6, pp. 549–575. Dekker, New York (1980), Chap. 18 Google Scholar
  13. 13.
    Bennett, C.H., Grinstein, G.: Phys. Rev. Lett. 55, 657 (1985) ADSCrossRefGoogle Scholar
  14. 14.
    Schloegl, F.: Z. Phys. 253, 147 (1972) ADSCrossRefGoogle Scholar
  15. 15.
    Grassberger, P.: Z. Phys. B Condens. Matter 47, 365 (1982) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Boon, J.P., Dab, D., Kapral, R., Lawniczak, A.: Rep. Mod. Phys. 273, 55 (1996) MathSciNetGoogle Scholar
  17. 17.
    Prakash, S., Nicolis, G.: J. Stat. Phys. 86, 1289 (1997) ADSMATHCrossRefGoogle Scholar
  18. 18.
    Durrett, R.: SIAM Rev. 41, 677 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Guo, X., de Decker, Y., Evans, J.W.: Phys. Rev. E 82, 021121 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    Guo, X., Liu, D.-J., Evans, J.W.: Phys. Rev. E 75, 061129 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    Ziff, R.M., Brosilow, B.J.: Phys. Rev. A 46, 4630 (1992) ADSCrossRefGoogle Scholar
  22. 22.
    Evans, J.W.: Rev. Mod. Phys. 65, 1281 (1993) ADSCrossRefGoogle Scholar
  23. 23.
    Guo, X., Evans, J.W., Liu, D.-J.: Physica A 387, 177 (2008). Note the error in site labeling in the last two loss terms in (17): replace i with i−1 ADSCrossRefGoogle Scholar
  24. 24.
    Fischer, P., Titulaer, U.M.: Surf. Sci. 221, 409 (1989) ADSCrossRefGoogle Scholar
  25. 25.
    De Decker, Y., Tsekouras, G.A., Provata, A., Erneux, Th., Nicolis, G.: Phys. Rev. E 69, 036203 (2004) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Keener, J.P.: SIAM J. Appl. Math. 47, 556 (1987) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Fath, G.: Physica D 116, 176 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Mikhailov, A.S.: Introduction to Synergetics. Springer, Berlin (1990) Google Scholar
  29. 29.
    Liu, D.-J.: J. Stat. Phys. 135, 77 (2009) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chi-Jen Wang
    • 1
    • 2
  • Xiaofang Guo
    • 1
    • 2
    • 3
  • Da-Jiang Liu
    • 1
  • J. W. Evans
    • 1
    • 2
    • 3
  1. 1.Ames Laboratory—USDOEIowa State UniversityAmesUSA
  2. 2.Departments of MathematicsIowa State UniversityAmesUSA
  3. 3.Department of Physics & AstronomyIowa State UniversityAmesUSA

Personalised recommendations