Journal of Statistical Physics

, Volume 145, Issue 3, pp 763–784 | Cite as

Phase Diagram of a Generalized ABC Model on the Interval

  • J. BartonEmail author
  • J. L. Lebowitz
  • E. R. Speer


We study the equilibrium phase diagram of a generalized ABC model on an interval of the one-dimensional lattice: each site i=1,…,N is occupied by a particle of type α=A,B,C, with the average density of each particle species N α /N=r α fixed. These particles interact via a mean field nonreflection-symmetric pair interaction. The interaction need not be invariant under cyclic permutation of the particle species as in the standard ABC model studied earlier. We prove in some cases and conjecture in others that the scaled infinite system N→∞, i/Nx∈[0,1] has a unique density profile ρ α (x) except for some special values of the r α for which the system undergoes a second order phase transition from a uniform to a nonuniform periodic profile at a critical temperature \(T_{c}=3\sqrt{r_{A} r_{B} r_{C}}/2\pi\).


Generalized ABC model External fields Phase diagram Scaling limit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayyer, A., Carlen, E.A., Lebowitz, J.L., Mohanty, P.K., Mukamel, D., Speer, E.R.: Phase diagram of the ABC model on an interval. J. Stat. Phys. 137, 1166–1204 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Evans, M.R., Kafri, Y., Koduvely, H.M., Mukamel, D.: Phase separation in one-dimensional driven diffusive systems. Phys. Rev. Lett. 80, 425–429 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    Evans, M.R., Kafri, Y., Koduvely, H.M., Mukamel, D.: Phase separation and coarsening in one-dimensional driven diffusive systems: local dynamics leading to long-range Hamiltonians. Phys. Rev. E 58, 2764–2778 (1998) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Sandow, S., Schultz, G.: On U q[SU(2)]-symmetric driven diffusion. Europhys. Lett. 26, 712 (1994) CrossRefGoogle Scholar
  5. 5.
    Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solvers guide. J. Phys. A 40, R333 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Clincy, M., Derrida, C., Evans, M.R.: Phase transition in the ABC model. Phys. Rev. E 67, 066115 (2003) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Fayolle, G., Furtlehner, C.: Stochastic deformations of sample paths of random walks and exclusion models. In: Drmota, M., Flajolet, P., Gardy, D., Gittenberger, B. (eds.) Algorithms, Trees, Combinatorics and Probabilities (Trends in Mathematics). Mathematics and Computer Science, vol. 3. Birkhäuser, Basel (2004) Google Scholar
  8. 8.
    Fayolle, G., Furtlehner, C.: Stochastic dynamics of discrete curves and multi-type exclusion processes. J. Stat. Phys. 127, 1049–1094 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Bodineau, T., Derrida, B., Lecomte, V., van Wijland, F.: Long range correlations and phase transition in non-equilibrium diffusive systems. J. Stat. Phys. 133, 1013–1031 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems. J. Stat. Phys. 135, 857–872 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Lederhendler, A., Cohen, O., Mukamel, D.: Phase diagram of the ABC model with nonconserving processes, J. Stat. Mech. P11016 (2010) Google Scholar
  12. 12.
    Bertini, L., Cancrini, N., Posta, G.: On the dynamical behavior of the ABC model. (2011)
  13. 13.
    Barton, J., Lebowitz, J.L., Speer, E.R.: The grand canonical ABC model: a reflection asymmetric mean field Potts model. J. Phys. A 44, 065005 (2011) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Villadelprat, J.: The period function of the generalized Lotka-Volterra centers. J. Math. Anal. Appl. 341, 834854 (2008) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsRutgers UniversityPiscatawayUSA
  2. 2.Department of MathematicsRutgers UniversityPiscatawayUSA

Personalised recommendations