Journal of Statistical Physics

, Volume 145, Issue 2, pp 265–275 | Cite as

Quantifying Density Fluctuations in Volumes of All Shapes and Sizes Using Indirect Umbrella Sampling

Article

Abstract

Water density fluctuations are an important statistical mechanical observable and are related to many-body correlations, as well as hydrophobic hydration and interactions. Local water density fluctuations at a solid-water surface have also been proposed as a measure of its hydrophobicity. These fluctuations can be quantified by calculating the probability, Pv(N), of observing N waters in a probe volume of interest v. When v is large, calculating Pv(N) using molecular dynamics simulations is challenging, as the probability of observing very few waters is exponentially small, and the standard procedure for overcoming this problem (umbrella sampling in N) leads to undesirable impulsive forces. Patel et al. (J. Phys. Chem. B 114:1632, 2010) have recently developed an indirect umbrella sampling (INDUS) method, that samples a coarse-grained particle number to obtain Pv(N) in cuboidal volumes. Here, we present and demonstrate an extension of that approach to volumes of other basic shapes, like spheres and cylinders, as well as to collections of such volumes. We further describe the implementation of INDUS in the NPT ensemble and calculate Pv(N) distributions over a broad range of pressures. Our method may be of particular interest in characterizing the hydrophobicity of interfaces of proteins, nanotubes and related systems.

Keywords

Umbrella sampling Density fluctuations Free energy calculations Hydrophobicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Widom, B.: J. Chem. Phys. 39, 2808 (1963) ADSCrossRefGoogle Scholar
  2. 2.
    Hummer, G., Garde, S., Garcia, A.E., Pohorille, A., Pratt, L.R.: Proc. Natl. Acad. Sci. USA 93, 8951 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    Garde, S., Hummer, G., Garcia, A.E., Paulaitis, M.E., Pratt, L.R.: Phys. Rev. Lett. 77, 4966 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    Hummer, G., Garde, S., Garcia, A.E., Paulaitis, M.E., Pratt, L.R.: Proc. Natl. Acad. Sci. USA 95, 1552 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    Chandler, D.: Phys. Rev. E 48, 2898 (1993) ADSCrossRefGoogle Scholar
  6. 6.
    Pratt, L.R., Chandler, D.: J. Chem. Phys. 67, 3683 (1977) ADSCrossRefGoogle Scholar
  7. 7.
    Stillinger, F.H.: J. Solution Chem. 2, 141 (1973) CrossRefGoogle Scholar
  8. 8.
    Lum, K., Chandler, D., Weeks, J.D.: J. Phys. Chem. B 103, 4570 (1999) CrossRefGoogle Scholar
  9. 9.
    Chandler, D.: Nature 437, 640 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    Lum, K.: Hydrophobicity at small and large length scales. Ph.D. thesis, University of California, Berkeley (1998) Google Scholar
  11. 11.
    Varilly, P., Patel, A.J., Chandler, D.: J. Chem. Phys. 134, 074109 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    Chandler, D.: Introduction to Modern Statistical Mechanics. Oxford University Press, New York (1987) Google Scholar
  13. 13.
    Patel, A.J., Varilly, P., Chandler, D.: J. Phys. Chem. B 114, 1632 (2010) CrossRefGoogle Scholar
  14. 14.
    Andreev, S., Reichman, D., Hummer, G.: J. Chem. Phys. 123(19), 194502 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    Patel, A.J., Varilly, P., Jamadagni, S.N., Acharya, H., Garde, S., Chandler, D.: (2011, submitted) Google Scholar
  16. 16.
    Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: J. Comput. Chem. 13, 1011 (1992) CrossRefGoogle Scholar
  17. 17.
    Souaille, M., Roux, B.: Comput. Phys. Commun. 135, 40 (2001) ADSMATHCrossRefGoogle Scholar
  18. 18.
    Vega, C., de Miguel, E.: J. Chem. Phys. 126, 154707 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    Plimpton, S.J.: J. Comput. Phys. 117, 1 (1995) ADSMATHCrossRefGoogle Scholar
  20. 20.
    Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: J. Chem. Theory Comput. 4, 435 (2008) CrossRefGoogle Scholar
  21. 21.
    Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: J. Phys. Chem. 91, 6269 (1987) CrossRefGoogle Scholar
  22. 22.
    Huang, D.M., Geissler, P.L., Chandler, D.: J. Phys. Chem. B 105, 6704 (2001) CrossRefGoogle Scholar
  23. 23.
    Rajamani, S., Truskett, T.M., Garde, S.: Proc. Natl. Acad. Sci. USA 102, 9475 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    Ashbaugh, H.S., Pratt, L.R.: Rev. Mod. Phys. 78, 159 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    Wallqvist, A., Berne, B.J.: J. Phys. Chem. 99, 2885 (1995) CrossRefGoogle Scholar
  26. 26.
    Ashbaugh, H.S., Paulaitis, M.E.: J. Am. Chem. Soc. 123, 10721 (2001) CrossRefGoogle Scholar
  27. 27.
    Sedlmeier, F., Horinek, D., Netz, R.R.: J. Chem. Phys. 134, 055105 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    Liu, P., Huang, X., Zhou, R., Berne, B.J.: Nature 437, 159 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    Gross, A.S., Chu, J.W.: J. Phys. Chem. B 114, 13333 (2010) CrossRefGoogle Scholar
  30. 30.
    Eun, C., Berkowitz, M.L.: J. Phys. Chem. B 114, 13410 (2010) CrossRefGoogle Scholar
  31. 31.
    Lopez, C.F., Darst, R.K., Rossky, P.J.: J. Phys. Chem. B 112(19), 5961 (2008) CrossRefGoogle Scholar
  32. 32.
    Godawat, R., Jamadagni, S.N., Garde, S.: Proc. Natl. Acad. Sci. USA 106, 15119 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    Acharya, H., Vembanur, S., Jamadagni, S.N., Garde, S.: Faraday Discuss. 146, 353 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    Sarupria, S., Garde, S.: Phys. Rev. Lett. 103, 037803 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    Giovambattista, N., Rossky, P.J., Debenedetti, P.G.: Phys. Rev. E 73, 041604 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    Hua, L., Zangi, R., Berne, B.J.: J. Phys. Chem. C 113(13), 5244 (2009) CrossRefGoogle Scholar
  37. 37.
    Giovambattista, N., Debenedetti, P.G., Rossky, P.J.: J. Phys. Chem. C 111(3), 1323 (2007) CrossRefGoogle Scholar
  38. 38.
    Mittal, J., Hummer, G.: Faraday Discuss. 146, 341 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    Daub, C.D., Wang, J., Kudesia, S., Bratko, D., Luzar, A.: Faraday Discuss. 146, 67 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    Berne, B.J., Weeks, J.D., Zhou, R.: Annu. Rev. Phys. Chem. 60, 85 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    Huang, X., Margulis, C.J., Berne, B.J.: Proc. Natl. Acad. Sci. USA 100, 11953 (2003) ADSCrossRefGoogle Scholar
  42. 42.
    Zhou, R., Huang, X., Margulis, C.J., Berne, B.J.: Science 305, 1605 (2004) ADSCrossRefGoogle Scholar
  43. 43.
    Choudhury, N., Pettitt, B.M.: J. Am. Chem. Soc. 129, 4847 (2007) CrossRefGoogle Scholar
  44. 44.
    Giovambattista, N., Rossky, P.J., Debenedetti, P.G.: J. Phys. Chem. B 113, 13723 (2009) CrossRefGoogle Scholar
  45. 45.
    Rasaiah, J.C., Garde, S., Hummer, G.: Annu. Rev. Phys. Chem. 59, 713 (2008) ADSCrossRefGoogle Scholar
  46. 46.
    Xu, L., Molinero, V.: J. Phys. Chem. B 114(21), 7320 (2010) CrossRefGoogle Scholar
  47. 47.
    Sarupria, S., Ghosh, T., Garcia, A.E., Garde, S.: Proteins 78, 1641 (2010) Google Scholar
  48. 48.
    Asthagiri, D., Pratt, L.R., Kress, J.D.: Phys. Rev. E 68(4), 041505 (2003) ADSCrossRefGoogle Scholar
  49. 49.
    Beck, T.L., Paulaitis, M.E., Pratt, L.R.: The Potential Distribution Theorem and Models of Molecular Solutions. Cambridge University Press, Cambridge (2006) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Howard P. Isermann Department of Chemical & Biological Engineering, and Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations