Journal of Statistical Physics

, Volume 144, Issue 2, pp 268–302 | Cite as

Are Biological Systems Poised at Criticality?

Article

Abstract

Many of life’s most fascinating phenomena emerge from interactions among many elements—many amino acids determine the structure of a single protein, many genes determine the fate of a cell, many neurons are involved in shaping our thoughts and memories. Physicists have long hoped that these collective behaviors could be described using the ideas and methods of statistical mechanics. In the past few years, new, larger scale experiments have made it possible to construct statistical mechanics models of biological systems directly from real data. We review the surprising successes of this “inverse” approach, using examples from families of proteins, networks of neurons, and flocks of birds. Remarkably, in all these cases the models that emerge from the data are poised near a very special point in their parameter space—a critical point. This suggests there may be some deeper theoretical principle behind the behavior of these diverse systems.

Keywords

Critical point Maximum entropy model Biological networks Proteins Collective behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackley, D., Hinton, G., Sejnowski, T.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985) CrossRefGoogle Scholar
  2. 2.
    Adami, C., Chu, J.: Critical and near-critical branching processes. Phys. Rev. E 66(1), 011907 (2002). doi:10.1103/PhysRevE.66.011907 MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Amit, D.J.: Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press, Cambridge (1989) MATHGoogle Scholar
  4. 4.
    Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(96), 223–230 (1973) ADSCrossRefGoogle Scholar
  5. 5.
    Auerbach, F.: Das Gesetz der Bevölkerungskonzentration. Petermanns Geogr. Mitt. 59, 74–76 (1913) Google Scholar
  6. 6.
    Bak, P.: How Nature Works. Springer, New York (1996) MATHGoogle Scholar
  7. 7.
    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71(24), 4083–4086 (1993) ADSCrossRefGoogle Scholar
  8. 8.
    Bak, P., Tang, C.: Earthquakes as a self-organized critical phenomenon. J. Geophys. Res. 94(B11), 15635–15637 (1989). doi:10.1029/JB094iB11p15635 ADSCrossRefGoogle Scholar
  9. 9.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105(4), 1232–1237 (2008). doi:10.1073/pnas.0711437105 ADSCrossRefGoogle Scholar
  11. 11.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim. Behav. 76, 201–215 (2008). doi:10.1016/j.anbehav.2008.02.004 CrossRefGoogle Scholar
  12. 12.
    Beggs, J.M.: The criticality hypothesis: how local cortical networks might optimize information processing. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 366(1864), 329–343 (2004). doi:10.1098/rsta.2007.2092 MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23(35), 11167–11177 (2003) Google Scholar
  14. 14.
    Beggs, J.M., Plenz, D.: Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24(22), 5216–5229 (2004). doi:10.1523/JNEUROSCI.0540-04.2004 CrossRefGoogle Scholar
  15. 15.
    Bialek, W., Ranganathan, R.: Rediscovering the power of pairwise interactions. arXiv:q-bio.QM (2007) Google Scholar
  16. 16.
    Bishop, D., Reppy, J.: Study of the superfluid transition in two-dimensional 4He films. Phys. Rev. Lett. 40(26), 1727–1730 (1978). doi:10.1103/PhysRevLett.40.1727 ADSCrossRefGoogle Scholar
  17. 17.
    Broderick, T., Dudik, M., Tkacik, G., Schapire, R.E., Bialek, W.: Faster solutions of the inverse pairwise Ising problem. arXiv:q-bio.QM (2007) Google Scholar
  18. 18.
    Camalet, S., Duke, T., Jülicher, F., Prost, J.: Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl. Acad. Sci. USA 97(7), 3183–3188 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    Cavagna, A., Cimarelli, A., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Santagati, R., Stefanini, F.: New statistical tools for analyzing the structure of animal groups. Math. Biosci. 214(1–2), 32–37 (2008). doi:10.1016/j.mbs.2008.05.006 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Cavagna, A., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A.: The STARFLAG handbook on collective animal behaviour: 2. Three-dimensional analysis (2008). doi:10.1016/j.anbehav.2008.02.003
  21. 21.
    Cavagna, A., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: The STARFLAG handbook on collective animal behaviour: 1. Empirical methods (2008). doi:10.1016/j.anbehav.2008.02.002
  22. 22.
    Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M.: Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107(26), 11865–11870 (2010). doi:10.1073/pnas.1005766107 ADSCrossRefGoogle Scholar
  23. 23.
    Chen, D.M., Wu, S., Guo, A., Yang, Z.: Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons. J. Phys. A, Math. Gen. 28, 5177 (1995). doi:10.1088/0305-4470/28/18/009 ADSMATHCrossRefGoogle Scholar
  24. 24.
    Chen, W., Hobbs, J.P., Tang, A., Beggs, J.M.: A few strong connections: optimizing information retention in neuronal avalanches. BMC Neurosci. 11, 3 (2010). doi:10.1186/1471-2202-11-3 CrossRefGoogle Scholar
  25. 25.
    Choe, Y., Magnasco, M.O., Hudspeth, A.J.: A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels. Proc. Natl. Acad. Sci. USA 95(26), 15321–15326 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    Chu, J., Adami, C.: A simple explanation for taxon abundance patterns. Proc. Natl. Acad. Sci. USA 96(26), 15017–15019 (1999) ADSMATHCrossRefGoogle Scholar
  27. 27.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009). doi:10.1137/070710111 MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Cocco, S., Leibler, S., Monasson, R.: Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proc. Natl. Acad. Sci. USA 106(33), 14058–14062 (2009). doi:10.1073/pnas.0906705106 ADSCrossRefGoogle Scholar
  29. 29.
    Cordes, M.H., Davidson, A.R., Sauer, R.T.: Sequence space, folding and protein design. Curr. Opin. Struct. Biol. 6(1), 3–10 (1996) CrossRefGoogle Scholar
  30. 30.
    Corral, Á., Pérez, C., Díaz-Guilera, A., Arenas, A.: Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators. Phys. Rev. Lett. 74(1), 118–121 (1995) ADSCrossRefGoogle Scholar
  31. 31.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991) MATHCrossRefGoogle Scholar
  32. 32.
    Cullen, J.M., Shaw, E., Baldwin, H.A.: Methods for measuring the three-dimensional structure of fish schools. Anim. Behav. 13(4), 534–543 (1965) CrossRefGoogle Scholar
  33. 33.
    Daggett, V., Fersht, A.: The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 4(6), 497–502 (2003). doi:10.1038/nrm1126 CrossRefGoogle Scholar
  34. 34.
    Duke, T., Jülicher, F.: Active traveling wave in the cochlea. Phys. Rev. Lett. 90(15), 158101 (2003) ADSCrossRefGoogle Scholar
  35. 35.
    Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (2005) Google Scholar
  36. 36.
    Eguíluz, V.M., Ospeck, M., Choe, Y., Hudspeth, A.J., Magnasco, M.O.: Essential nonlinearities in hearing. Phys. Rev. Lett. 84(22), 5232–5235 (2000) ADSCrossRefGoogle Scholar
  37. 37.
    Giardina, I.: Collective behavior in animal groups: theoretical models and empirical studies. HFSP J. 2(4), 205–219 (2008). doi:10.2976/1.2961038 CrossRefGoogle Scholar
  38. 38.
    Gold, T.: Hearing. II. The physical basis of the action of the cochlea. Proc. R. Soc. Lond. B, Biol. Sci. 135, 492–498 (1948) ADSCrossRefGoogle Scholar
  39. 39.
    Gould, S., Eldredge, N.: Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3(2), 115–151 (1977) Google Scholar
  40. 40.
    Halabi, N., Rivoire, O., Leibler, S., Ranganathan, R.: Protein sectors: evolutionary units of three-dimensional structure. Cell 138(4), 774–786 (2009). doi:10.1016/j.cell.2009.07.038 CrossRefGoogle Scholar
  41. 41.
    Haldeman, C., Beggs, J.M.: Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys. Rev. Lett. 94(5), 058101 (2005) ADSCrossRefGoogle Scholar
  42. 42.
    Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1949) Google Scholar
  43. 43.
    Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, Reading (1991) Google Scholar
  44. 44.
    Herz, A., Hopfield, J.: Earthquake cycles and neural reverberations: collective oscillations in systems with pulse-coupled threshold elements. Phys. Rev. Lett. 75(6), 1222–1225 (1995) ADSCrossRefGoogle Scholar
  45. 45.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79(8), 2554–2558 (1982) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Hopfield, J.J., Tank, D.W.: Computing with neural circuits: a model. Science 233(4764), 625–633 (1986) ADSCrossRefGoogle Scholar
  47. 47.
    Horovitz, A., Fersht, A.R.: Co-operative interactions during protein folding. J. Mol. Biol. 224(3), 733–740 (1992) CrossRefGoogle Scholar
  48. 48.
    Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987) MATHGoogle Scholar
  49. 49.
    Hudspeth, A.J., Jülicher, F., Martin, P.: A critique of the critical cochlea: Hopf—a bifurcation—is better than none. J. Neurophysiol. 104(3), 1219–1229 (2010). doi:10.1152/jn.00437.2010 CrossRefGoogle Scholar
  50. 50.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957). doi:10.1103/PhysRev.106.620 MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Jaynes, E.T.: Information theory and statistical mechanics. II. Phys. Rev. 108, 171 (1957). doi:10.1103/PhysRev.108.171 MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Keller, J.B., Zumino, B.: Determination of intermolecular potentials from thermodynamic data and the law of corresponding states. J. Chem. Phys. 30(5), 1351 (1959). doi:10.1063/1.1730184 ADSCrossRefGoogle Scholar
  53. 53.
    Kemp, D.T.: Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 64(5), 1386–1391 (1978) MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    Krause, D.J., Ruxton, G.D.: Living in Groups. Oxford University Press, Oxford (2002) Google Scholar
  55. 55.
    Litke, A.M., Bezayiff, N., Chichilnisky, E.J., Cunningham, W., Dabrowski, W., Grillo, A.A., Grivich, M., Grybos, P., Hottowy, P., Kachiguine, S., Kalmar, R.S., Mathieson, K., Petrusca, D., Rahman, M., Sher, A.: What does the eye tell the brain? Development of a system for the large-scale recording of retinal output activity. IEEE Trans. Nucl. Sci. 51(4), 1434–1440 (2004). doi:10.1109/TNS.2004.832706 ADSCrossRefGoogle Scholar
  56. 56.
    Lockless, S.W., Ranganathan, R.: Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286(5438), 295–299 (1999) CrossRefGoogle Scholar
  57. 57.
    Lunt, B., Szurmant, H., Procaccini, A., Hoch, J.A., Hwa, T., Weigt, M.: Inference of direct residue contacts in two-component signaling. Methods Enzymol. 471, 17–41 (2010). doi:10.1016/S0076-6879(10)71002-8 CrossRefGoogle Scholar
  58. 58.
    Magnasco, M., Piro, O., Cecchi, G.: Self-tuned critical anti-Hebbian networks. Phys. Rev. Lett. 102, 258102 (2009) ADSCrossRefGoogle Scholar
  59. 59.
    Magnasco, M.O.: A wave traveling over a Hopf instability shapes the cochlear tuning curve. Phys. Rev. Lett. 90(5), 058101 (2003) ADSCrossRefGoogle Scholar
  60. 60.
    Meister, M., Lagnado, L., Baylor, D.A.: Concerted signaling by retinal ganglion cells. Science 270(5239), 1207–1210 (1995) ADSCrossRefGoogle Scholar
  61. 61.
    Mézard, M., Mora, T.: Constraint satisfaction problems and neural networks: a statistical physics perspective. J. Physiol. (Paris) 103(1–2), 107–113 (2009). doi:10.1016/j.jphysparis.2009.05.013 CrossRefGoogle Scholar
  62. 62.
    Mézard, M., Parisi, G., Virasoro, M.A.: Spin-Glass Theory and Beyond. Lecture Notes in Physics, vol. 9. World Scientific, Singapore (1987) MATHGoogle Scholar
  63. 63.
    Mora, T., Walczak, A.M., Bialek, W., Callan, C.G.: Maximum entropy models for antibody diversity. Proc. Natl. Acad. Sci. USA 107(12), 5405–5410 (2010). doi:10.1073/pnas.1001705107 ADSCrossRefGoogle Scholar
  64. 64.
    Murphy, K.P., Travers, P., Janeway, C., Walport, M.: Janeway’s Immunobiology. Garland, New York (2008) Google Scholar
  65. 65.
    Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323 (2005). doi:10.1080/00107510500052444 ADSCrossRefGoogle Scholar
  66. 66.
    Ohiorhenuan, I.E., Mechler, F., Purpura, K.P., Schmid, A.M., Hu, Q., Victor, J.D.: Sparse coding and high-order correlations in fine-scale cortical networks. Nature 466(7306), 617–621 (2010). doi:10.1038/nature09178 ADSCrossRefGoogle Scholar
  67. 67.
    Ohiorhenuan, I.E., Victor, J.D.: Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks. J. Comput. Neurosci. 30(1), 125–141 (2011). doi:10.1007/s10827-010-0257-0 MathSciNetCrossRefGoogle Scholar
  68. 68.
    Ospeck, M., Eguíluz, V.M., Magnasco, M.O.: Evidence of a Hopf bifurcation in frog hair cells. Biophys. J. 80(6), 2597–2607 (2001). doi:10.1016/S0006-3495(01)76230-3 CrossRefGoogle Scholar
  69. 69.
    Rieke, F., Warland, D., de Ryuter van Stevenick, R., Bialek, W.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1997) Google Scholar
  70. 70.
    Russ, W.P., Lowery, D.M., Mishra, P., Yaffe, M.B., Ranganathan, R.: Natural-like function in artificial WW domains. Nature 437(7058), 579–583 (2005). doi:10.1038/nature03990 ADSCrossRefGoogle Scholar
  71. 71.
    Schneidman, E., Still, S., Berry, M.J., Bialek, W.: Network information and connected correlations. Phys. Rev. Lett. 91(23), 238701 (2003) ADSCrossRefGoogle Scholar
  72. 72.
    Schneidman, E., Berry, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087), 1007–1012 (2006). doi:10.1038/nature04701 ADSCrossRefGoogle Scholar
  73. 73.
    Schug, A., Weigt, M., Onuchic, J.N., Hwa, T., Szurmant, H.: High-resolution protein complexes from integrating genomic information with molecular simulation. Proc. Natl. Acad. Sci. USA 106(52), 22124–22129 (2009). doi:10.1073/pnas.0912100106 ADSCrossRefGoogle Scholar
  74. 74.
    Segev, R., Goodhouse, J., Puchalla, J., Berry, M.J.: Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat. Neurosci. 7(10), 1154–1161 (2004). doi:10.1038/nn1323 CrossRefGoogle Scholar
  75. 75.
    Sessak, V., Monasson, R.: Small-correlation expansions for the inverse Ising problem. J. Phys. A, Math. Theor. 42(5), 055001 (2009). doi:10.1088/1751-8113/42/5/055001 MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    Seung, H.S.: How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA 93(23), 13339–13344 (1996) ADSCrossRefGoogle Scholar
  77. 77.
    Shlens, J., Field, G.D., Gauthier, J.L., Greschner, M., Sher, A., Litke, A.M., Chichilnisky, E.J.: The structure of large-scale synchronized firing in primate retina. J. Neurosci. 29(15), 5022–5031 (2009). doi:10.1523/JNEUROSCI.5187-08.2009 CrossRefGoogle Scholar
  78. 78.
    Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.J.: The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266 (2006). doi:10.1523/JNEUROSCI.1282-06.2006 CrossRefGoogle Scholar
  79. 79.
    Socolich, M., Lockless, S.W., Russ, W.P., Lee, H., Gardner, K.H., Ranganathan, R.: Evolutionary information for specifying a protein fold. Nature 437(7058), 512–518 (2005). doi:10.1038/nature03991 ADSCrossRefGoogle Scholar
  80. 80.
    Stephens, G.J., Mora, T., Tkacik, G., Bialek, W.: Thermodynamics of natural images. arXiv:q-bio.NC (2008) Google Scholar
  81. 81.
    Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J.L., Patel, H., Prieto, A., Petrusca, D., Grivich, M.I., Sher, A., Hottowy, P., Dabrowski, W., Litke, A.M., Beggs, J.M.: A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. J. Neurosci. 28(2), 505–518 (2008). doi:10.1523/JNEUROSCI.3359-07.2008 CrossRefGoogle Scholar
  82. 82.
    Tkacik, G., Schneidman, E., Berry, M.J. II, Bialek, W.: Ising models for networks of real neurons. arXiv:q-bio.NC (2006) Google Scholar
  83. 83.
    Tkacik, G., Schneidman, E., Berry, M.J. II, Bialek, W.: Spin glass models for a network of real neurons. arXiv:q-bio.NC (2009) Google Scholar
  84. 84.
    Toner, J., Tu, Y.: Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75(23), 4326–4329 (1995) ADSCrossRefGoogle Scholar
  85. 85.
    Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58(4), 4828–4858 (1998) MathSciNetADSCrossRefGoogle Scholar
  86. 86.
    Usher, M., Stemmler, M., Olami, Z.: Dynamic pattern formation leads to 1/f noise in neural populations. Phys. Rev. Lett. 74(2), 326–329 (1995) ADSCrossRefGoogle Scholar
  87. 87.
    Veatch, S.L., Soubias, O., Keller, S.L., Gawrisch, K.: Critical fluctuations in domain-forming lipid mixtures. Proc. Natl. Acad. Sci. USA 104(45), 17650–17655 (2007) ADSCrossRefGoogle Scholar
  88. 88.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995) ADSCrossRefGoogle Scholar
  89. 89.
    Wässle, H., Peichl, L., Boycott, B.B.: Mosaics and territories of cat retinal ganglion cells. Prog. Brain Res. 58, 183–190 (1983). doi:10.1016/S0079-6123(08)60019-9 CrossRefGoogle Scholar
  90. 90.
    Watson, H., Galton, F.: On the probability of the extinction of families. J. Anthropol. Inst. G.B. Irel. 4, 138–144 (1875) CrossRefGoogle Scholar
  91. 91.
    Weigt, M., White, R.A., Szurmant, H., Hoch, J.A., Hwa, T.: Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. USA 106(1), 67–72 (2009). doi:10.1073/pnas.0805923106 ADSCrossRefGoogle Scholar
  92. 92.
    Weinstein, J.A., Jiang, N., White, R.A., Fisher, D.S., Quake, S.R.: High-throughput sequencing of the zebrafish antibody repertoire. Science 324(5928), 807–810 (2009). doi:10.1126/science.1170020 ADSCrossRefGoogle Scholar
  93. 93.
    Yu, S., Huang, D., Singer, W., Nikolic, D.: A small world of neuronal synchrony. Cereb. Cortex 18(12), 2891–901 (2008). doi:10.1093/cercor/bhn047 CrossRefGoogle Scholar
  94. 94.
    Yule, G.: A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, F.R.S. Philos. Trans. R. Soc. Lond., B Contain. Pap. Biol. Character 213, 21–87 (1925) ADSCrossRefGoogle Scholar
  95. 95.
    Zapperi, S., Lauritsen, K.B., Stanley, H.: Self-organized branching processes: mean-field theory for avalanches. Phys. Rev. Lett. 75(22), 4071–4074 (1995) ADSCrossRefGoogle Scholar
  96. 96.
    Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge (1949) Google Scholar
  97. 97.
    Zurek, P.: Spontaneous narrowband acoustic signals emitted by human ears. J. Acoust. Soc. Am. 69, 514–523 (1981) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Joseph Henry Laboratories of Physics, Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUSA
  2. 2.Laboratoire de Physique Statistique de l’École Normale SupérieureUMR 8550 of CNRS associated with Universities Paris 6 et Paris 7Paris Cedex 05France

Personalised recommendations