Journal of Statistical Physics

, Volume 145, Issue 2, pp 227–239 | Cite as

How Interface Geometry Dictates Water’s Thermodynamic Signature in Hydrophobic Association

Article

Abstract

As a common view the hydrophobic association between molecular-scale binding partners is supposed to be dominantly driven by entropy. Recent calorimetric experiments and computer simulations heavily challenge this established paradigm by reporting that water’s thermodynamic signature in the binding of small hydrophobic ligands to similar-sized apolar pockets is enthalpy-driven. Here we show with purely geometric considerations that this controversy can be resolved if the antagonistic effects of concave and convex bending on water interface thermodynamics are properly taken into account. A key prediction of this continuum view is that for fully complementary binding of the convex ligand to the concave counterpart, water shows a thermodynamic signature very similar to planar (large-scale) hydrophobic association, that is, enthalpy-dominated, and hardly depends on the particular pocket/ligand geometry. A detailed comparison to recent simulation data qualitatively supports the validity of our perspective down to subnanometer scales. Our findings have important implications for the interpretation of thermodynamic signatures found in molecular recognition and association processes. Furthermore, traditional implicit solvent models may benefit from our view with respect to their ability to predict binding free energies and entropies.

Keywords

Hydrophobic association Implicit water model Binding entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, R., Wang, L., Friesner, R.A., Berne, B.J.: A displaced-solvent functional analysis of model hydrophobic enclosures. J. Chem. Theory Comput. 6, 2924–2934 (2010) CrossRefGoogle Scholar
  2. 2.
    Ashbaugh, H., Pratt, L.: Colloquium: scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 78(1), 159–178 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    Ashbaugh, H.S.: Entropy crossover from molecular to macroscopic cavity hydration. Chem. Phys. Lett. 477(1–3), 109–111 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    Ashbaugh, H.S., Paulaitis, M.E.: Effect of solute size and solute-water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 123(43), 10721–10728 (2001) CrossRefGoogle Scholar
  5. 5.
    Baron, R., Setny, P., McCammon, J.A.: Water in cavity-ligand recognition. J. Am. Chem. Soc. 132(34), 12091–12097 (2010) CrossRefGoogle Scholar
  6. 6.
    Belch, A., Berkowitz, M.: Molecular-dynamics simulations of tips2 water restricted by a spherical hydrophobic boundary. Chem. Phys. Lett. 113, 278 (1985) ADSCrossRefGoogle Scholar
  7. 7.
    Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: SPC/E water model. J. Phys. Chem. 91, 6269 (1987) CrossRefGoogle Scholar
  8. 8.
    Block, B.J., Das, S.K., Oettel, M., Virnau, P., Binder, K.: Curvature dependence of surface free energy of liquid drops and bubbles: a simulation study. J. Chem. Phys. 133, 154702 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    Bolhuis, P.G., Chandler, D.: Transition path sampling of cavitation between molecular scale solvophobic surfaces. J. Chem. Phys. 113, 8154 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    Boruvka, L., Neumann, A.W.: Generalization of the classical theory of capillarity. J. Chem. Phys. 66, 5464 (1977) ADSCrossRefGoogle Scholar
  11. 11.
    Boruvka, L., Rotenberg, Y., Neumann, A.W.: Free energy formulation of theory of capillarity. Langmuir 1, 40–44 (1985) CrossRefGoogle Scholar
  12. 12.
    Carey, C., Cheng, Y., Rossky, P.: Hydration structure of the α-chymotrypsin substrate binding pocket: the impact of constrained geometry. Chem. Phys. 258, 415 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437(7059), 640–647 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    Chau, P.L.: Computer simulation of the hydrophobic hydration of concave surfaces. Mol. Phys. 99, 1289 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    Che, J., Dzubiella, J., McCammon, J.A., Li, B.: Electrostatic free energy and its variations in the implicit solvation of molecules. J. Phys. Chem. B 112, 3058 (2008) CrossRefGoogle Scholar
  16. 16.
    Chen, F., Smith, P.E.: Simulated surface tensions of common water models. J. Chem. Phys. 126(22), 221101 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    Cheng, L.T., Dzubiella, J., McCammon, J.A., Li, B.: Application of the level-set method to the implicit solvation of nonpolar molecules. J. Chem. Phys. 127, 084503 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    Dzubiella, J., Swanson, J.M.J., McCammon, J.A.: Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys. Rev. Lett. 96(8), 087802 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    Dzubiella, J., Swanson, J.M.J., McCammon, J.A.: Coupling polar and nonpolar solvation free energies in implicit solvent models. J. Chem. Phys. 96(8), 084905 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    Englert, L., Biela, A., Zayed, M., Heine, A., Hangauer, D., Klebe, G.: Displacement of disordered water molecules from hydrophobic pocket creates enthalpic signature: binding of phosphonamidate to the s1’-pocket of thermolysin. Biochim. Biophys. Acta 1800, 1192 (2010) CrossRefGoogle Scholar
  21. 21.
    Ewell, J., Gibb, B., Rick, S.: Water inside a hydrophobic cavitand molecule. J. Phys. Chem. B 112(33), 10272–10279 (2008) CrossRefGoogle Scholar
  22. 22.
    Floris, F.: Modeling the cavitation free energy. J. Phys. Chem. B 109(50), 24061–24070 (2005) CrossRefGoogle Scholar
  23. 23.
    Gilson, M.K., Zhou, H.X.: Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 36, 21–42 (2007) CrossRefGoogle Scholar
  24. 24.
    Graziano, G.: Significance of the Tolman length at a molecular level. Chem. Phys. Lett. 497, 33–36 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957) MATHGoogle Scholar
  26. 26.
    Hansen-Goos, H., Roth, R., Mecke, K., Dietrich, S.: Solvation of proteins: linking thermodynamics to geometry. Phys. Rev. Lett. 99, 128101 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    Huang, D., Geissler, P., Chandler, D.: Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105(28), 6704–6709 (2001) CrossRefGoogle Scholar
  28. 28.
    Hummer, G.: Molecular binding: under water’s influence. Nat. Chem. 2, 906 (2010) CrossRefGoogle Scholar
  29. 29.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983) ADSCrossRefGoogle Scholar
  30. 30.
    Jorgensen, W.L., Madura, J.D., Swenson, C.J.: Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106, 6638 (1984) CrossRefGoogle Scholar
  31. 31.
    König, P.M., Roth, R., Mecke, K.: Morphological thermodynamics of fluids: shape dependence of free energies. Phys. Rev. Lett. 93(16), 160601 (2004) CrossRefGoogle Scholar
  32. 32.
    König, P.M., Roth, R., Dietrich, S.: Lock and key model system. Europhys. Lett. 84, 68006 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    Lum, K., Chandler, D., Weeks, J.: Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999) CrossRefGoogle Scholar
  34. 34.
    Mecke, K.R.: Integral geometry in statistical physics. Int. J. Mod. Phys. B 12, 861 (1998) MathSciNetADSCrossRefMATHGoogle Scholar
  35. 35.
    Mobley, D.L., Dill, K.A.: Binding of small-molecule ligands to proteins: what you see is not always what you get. Structure 17, 489–498 (2009) CrossRefGoogle Scholar
  36. 36.
    Odriozola, G., Jiménez-Ángeles, F., Lozada-Cassou, M.: Entropy driven key-lock assembly. J. Chem. Phys. 129, 111101 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    Paschek, D.: Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models. J. Chem. Phys. 120(14), 6674–6690 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    Qvist, J., Davidovic, M., Hamelberg, D., Halle, B.: A dry ligand binding cavity in a solvated protein. Proc. Natl. Acad. Sci. USA 105, 6296 (2008) ADSCrossRefGoogle Scholar
  39. 39.
    Roux, B., Simonson, T.: Implicit solvent models. Biophys. Chem. 78, 1–20 (1999) CrossRefGoogle Scholar
  40. 40.
    Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Dover, Mineola (2002) Google Scholar
  41. 41.
    Sedlmeier, F., Horinek, D., Netz, R.R.: Nanoroughness, intrinsic density profile, and rigidity of the air-water interface. Phys. Rev. Lett. 103, 136102 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    Setny, P., Geller, M.: Water properties inside nanoscopic hydrophobic pocket studied by computer simulations. J. Chem. Phys. 125, 144717 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    Setny, P., Wang, Z., Cheng, L.T., Li, B., McCammon, J.A., Dzubiella, J.: Dewetting-controlled binding of ligands to hydrophobic pockets. Phys. Rev. Lett. 103(18), 187801 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    Setny, P., Baron, R., McCammon, J.A.: How can hydrophobic association be enthalpy driven? J. Chem. Theory Comput. 6(9), 2866–2871 (2010) CrossRefGoogle Scholar
  45. 45.
    Smithrud, D., Wyman, T., Diederich, F.: Enthalpically driven cyclophane arene inclusion complexation—solvent-dependent calorimetric studies. J. Am. Chem. Soc. 113, 5420 (1991) CrossRefGoogle Scholar
  46. 46.
    Stewart, M.C., Evans, R.: Wetting and drying at a curved substrate: long-ranged forces. Phys. Rev. E 71, 011602 (2005) ADSCrossRefGoogle Scholar
  47. 47.
    Tolman, R.: The effect of droplet size on surface tension. J. Chem. Phys. 17(3), 333–337 (1949) ADSCrossRefGoogle Scholar
  48. 48.
    Vaitheeswaran, S., Yin, H., Rasaiah, J., Hummer, G.: Water clusters in nonpolar cavities. Proc. Natl. Acad. Sci. USA 101(49), 17002 (2004) ADSCrossRefGoogle Scholar
  49. 49.
    van Giessen, A.E., Blokhuis, E.M.: Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations. J. Chem. Phys. 131, 164705 (2009) ADSCrossRefGoogle Scholar
  50. 50.
    Wang, L., Berne, B.J., Friesner, R.A.: Ligand binding to protein-binding pockets with wet and dry regions. Proc. Natl. Acad. Sci. 108, 1326–1330 (2011) ADSCrossRefGoogle Scholar
  51. 51.
    Yasuda, S., Yoshidome, T., Oshima, H., Kodama, R., Harano, Y., Kinoshita, M.: Effects of side-chain packing on the formation of secondary structures in protein folding. J. Chem. Phys. 132(6), 065105 (2010) ADSCrossRefGoogle Scholar
  52. 52.
    Yin, H., Hummer, G., Rasaiah, J.: Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion. J. Am. Chem. Soc. 129(23), 7369–7377 (2007) CrossRefGoogle Scholar
  53. 53.
    Young, T., Abel, R., Kim, B., Berne, B.J., Friesner, R.A.: Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. 104, 808 (2007) ADSCrossRefGoogle Scholar
  54. 54.
    Young, T., Hua, L., Huang, X., Abel, R., Friesner, R., Berne, B.J.: Dewetting transitions in protein cavities. Proteins 78, 1856–1869 (2010) Google Scholar
  55. 55.
    Yu, H., Rick, S.: Free energy, entropy, and enthalpy of a water molecule in various protein environments. J. Phys. Chem. B 114(35), 11552–11560 (2010) CrossRefGoogle Scholar
  56. 56.
    Zangi, R., Berne, B.J.: Temperature dependence of dimerization and dewetting of large-scale hydrophobes: a molecular dynamics study. J. Phys. Chem. B 112, 8634 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Helmholtz Zentrum Berlin für Materialien und EnergieBerlinGermany
  2. 2.Department of PhysicsHumboldt University BerlinBerlinGermany

Personalised recommendations