Journal of Statistical Physics

, Volume 145, Issue 3, pp 549–590

The Ising Susceptibility Scaling Function

  • Y. Chan
  • A. J. Guttmann
  • B. G. Nickel
  • J. H. H. Perk
Article

Abstract

We have dramatically extended the zero field susceptibility series at both high and low temperature of the Ising model on the triangular and honeycomb lattices, and used these data and newly available further terms for the square lattice to calculate a number of terms in the scaling function expansion around both the ferromagnetic and, for the square and honeycomb lattices, the antiferromagnetic critical point.

Keywords

Ising model Susceptibility Triangular lattice Honeycomb lattice Series expansion Corrections to scaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Domb, C.: Order-disorder statistics. II. A two-dimensional model. Proc. R. Soc. Lond. A 199, 199–221 (1949) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Domb, C., Green, M.S. (eds.) Series Expansions for Lattice Models. Phase Transitions and Critical Phenomena, vol. 3. Academic Press, London (1974) Google Scholar
  3. 3.
    Orrick, W.P., Nickel, B.G., Guttmann, A.J., Perk, J.H.H.: Critical behavior of the two-dimensional Ising susceptibility. Phys. Rev. Lett. 86, 4120–4123 (2001). arXiv:cond-mat/0009059 ADSCrossRefGoogle Scholar
  4. 4.
    Orrick, W.P., Nickel, B., Guttmann, A.J., Perk, J.H.H.: The susceptibility of the square lattice Ising model: new developments. J. Stat. Phys. 102, 795–841 (2001). arXiv:cond-mat/0103074. For the complete set of series coefficients, see http://www.ms.unimelb.edu.au/~tonyg MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Nickel, B.: On the singularity structure of the 2D Ising model susceptibility. J. Phys. A, Math. Gen. 32, 3889–3906 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Spin-spin correlation functions for the two dimensional Ising model: exact theory in the scaling region. Phys. Rev. B 13, 315–374 (1976) ADSGoogle Scholar
  7. 7.
    Barouch, E., McCoy, B.M., Wu, T.T.: Zero-field susceptibility of the two-dimensional Ising model near T c. Phys. Rev. Lett. 31, 1409–1411 (1973) ADSCrossRefGoogle Scholar
  8. 8.
    Tracy, C.A., McCoy, B.M.: Neutron scattering and the correlation functions of the two-dimensional Ising model near T c. Phys. Rev. Lett. 31, 1500–1504 (1973) ADSCrossRefGoogle Scholar
  9. 9.
    Jimbo, M., Miwa, T.: Studies on holonomic quantum fields. XVII. Proc. Jpn. Acad. A 56, 405–410 (1980). Errata: Proc. Japan Acad. A 57, 347 (1981) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Au-Yang, H., Perk, J.H.H.: Correlation functions and susceptibility in the Z-invariant Ising model. In: Kashiwara, M., Miwa, T. (eds.) MathPhys Odyssey 2001: Integrable Models and Beyond, pp. 23–48. Birkhäuser, Boston (2002). Preprint at http://physics.okstate.edu/perk/papers/kyoto/ziising.pdf CrossRefGoogle Scholar
  11. 11.
    Guttmann, A.J.: Susceptibility amplitudes for the two-dimensional Ising model. Phys. Rev. B 9, 4991–4992 (1974). Errata: Phys. Rev. B 12, 1991 (1975) ADSCrossRefGoogle Scholar
  12. 12.
    Ritchie, D.S., Betts, D.D.: Extended universality of the Ising model. Phys. Rev. B 11, 2559–2563 (1975) ADSCrossRefGoogle Scholar
  13. 13.
    Au-Yang, H., Perk, J.H.H.: Susceptibility calculations in periodic and quasiperiodic planar Ising models. Physica A 321, 81–89 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Kong, X.P.: Wave vector dependent susceptibility of the two dimensional Ising model. Ph.D. Thesis, State University of New York at Stony Brook (1987) Google Scholar
  15. 15.
    Fisher, M.E.: Transformations of Ising models. Phys. Rev. 113, 969–981 (1959) ADSCrossRefGoogle Scholar
  16. 16.
    Aharony, A., Fisher, M.E.: Nonlinear scaling fields and corrections to scaling near criticality. Phys. Rev. B 27, 4394–4400 (1983) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Aharony, A., Fisher, M.E.: Universality in analytic corrections to scaling for planar Ising models. Phys. Rev. Lett. 45, 679–682 (1980) ADSCrossRefGoogle Scholar
  18. 18.
    Guttmann, A.J.: Ising model amplitudes and extended lattice-lattice scaling. J. Phys. A, Math. Gen. 10, 1911–1916 (1977) ADSCrossRefGoogle Scholar
  19. 19.
    Gaunt, D.S., Guttmann, A.J.: A generalised form of extended lattice-lattice scaling. J. Phys. A, Math. Gen. 11, 1381–1397 (1978) ADSCrossRefGoogle Scholar
  20. 20.
    Mangazeev, V.V., Dudalev, M.Yu., Bazhanov, V.V., Batchelor, M.T.: Scaling and universality in the two-dimensional Ising model with a magnetic field. Phys. Rev. E 81, 060103(R) (2010). arXiv:1002.4234 MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Caselle, M., Hasenbusch, M., Pelissetto, A., Vicari, E.: Irrelevant operators in the two-dimensional Ising model. J. Phys. A, Math. Theor. 35, 4861–4888 (2002). arXiv:cond-mat/0106372 MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 4th edn. Academic Press, New York (1980) MATHGoogle Scholar
  23. 23.
    Syozi, I.: Transformation of Ising Models. In: Domb, C., Green, M.S. (eds.) Exact Results. Phase Transitions and Critical Phenomena, vol. 1. Academic Press, London (1972) Google Scholar
  24. 24.
    Perk, J.H.H.: Quadratic identities for Ising model correlations. Phys. Lett. A 79, 3–5 (1980) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    McCoy, B.M., Wu, T.T.: Nonlinear partial difference equations for the two-dimensional Ising model. Phys. Rev. Lett. 45, 675–678 (1980) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    McCoy, B.M., Wu, T.T.: Nonlinear partial difference equations for the two-spin correlation function of the two-dimensional Ising model. Nucl. Phys. B 180[FS2], 89–115 (1980) MathSciNetADSGoogle Scholar
  27. 27.
    McCoy, B.M., Perk, J.H.H., Wu, T.T.: Ising field theory: quadratic difference equations for the n-point Green’s functions on the square lattice. Phys. Rev. Lett. 46, 757–760 (1981) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    McCoy, B.M., Wu, T.T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge (1973) MATHGoogle Scholar
  29. 29.
    Baxter, R.J.: Solvable eight-vertex model on an arbitrary planar lattice. Philos. Trans. R. Soc. Lond. A 289, 315–346 (1978) MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Au-Yang, H., Perk, J.H.H.: Critical correlations in a Z-invariant inhomogeneous Ising model. Physica A 144, 44–104 (1987) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Au-Yang, H., Perk, J.H.H.: Wavevector-dependent susceptibility in aperiodic planar Ising models. In: Kashiwara, M., Miwa, T. (eds.) MathPhys Odyssey 2001: Integrable Models and Beyond, pp. 1–21. Birkhäuser, Boston (2002). Preprint at http://physics.okstate.edu/perk/papers/kyoto/triquasi.pdf CrossRefGoogle Scholar
  32. 32.
    Naya, S.: On the spontaneous magnetizations of honeycomb and kagomé Ising lattices. Prog. Theor. Phys. 11, 53–62 (1954) ADSMATHCrossRefGoogle Scholar
  33. 33.
    Witte, N.S.: Isomonodromic deformation theory and the next-to-diagonal correlations of the anisotropic square lattice Ising model. J. Phys. A, Math. Theor. 40, F491–F501 (2007). arXiv:0705.0557 MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Houtappel, R.M.F.: Order-disorder in hexagonal lattices. Physica 16, 425–455 (1950) MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    Wannier, G.H.: Antiferromagnetism. The triangular Ising net. Phys. Rev. 79, 357–364 (1950). Errata: Phys. Rev. B 7, 5017 (1973) MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    Newell, G.F.: Crystal statistics of a two-dimensional triangular Ising lattice. Phys. Rev. 79, 876–882 (1950) MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    Hancock, H.: Lectures on the Theory of Elliptic Functions, arts. 251, 357–360. Dover Publications, New York (1958) MATHGoogle Scholar
  38. 38.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927). Chaps. 21 and 22 MATHGoogle Scholar
  39. 39.
    Stephenson, J.: Ising model spin correlations on the triangular lattice. J. Math. Phys. 5, 1009–1024 (1964) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Sykes, M.F., Gaunt, D.S., Martin, J.L., Mattingly, S.R., Essam, J.W.: Derivation of low-temperature expansions for Ising model. IV. Two-dimensional lattices: temperature grouping. J. Math. Phys. 14, 1071–1074 (1973) ADSCrossRefGoogle Scholar
  41. 41.
    Sykes, M.F., Gaunt, D.S., Roberts, P.D., Wyles, J.A.: High temperature series for the susceptibility of the Ising model. I. Two dimensional lattices. J. Phys. A 5, 624–639 (1972) ADSCrossRefGoogle Scholar
  42. 42.
    Sykes, M.F., Watts, M.G., Gaunt, D.S.: Derivation of low-temperature expansions for Ising model. VIII. Ferromagnetic and antiferromagnetic polynomials for the honeycomb-triangular system. J. Phys. A, Math. Gen. 8, 1448–1460 (1975) ADSCrossRefGoogle Scholar
  43. 43.
    Chan, Y., Guttmann, A.J., Nickel, B.G., Perk, J.H.H.: Additional material added to the source files of arXiv:1012.5272
  44. 44.
    Boukraa, S., Guttmann, A.J., Hassani, S., Jensen, I., Maillard, J.-M., Nickel, B., Zenine, N.: Experimental mathematics on the magnetic susceptibility of the square lattice Ising model. J. Phys. A, Math. Theor. 41, 455202 (2008). arXiv:0808.0763. See http://www.ms.unimelb.edu.au/~iwan/ising/Ising_ser.html for the series coefficients MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Nickel, B.: Addendum to ‘On the singularity structure of the 2D Ising model susceptibility’. J. Phys. A, Math. Gen. 33, 1693–1711 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Vaidya, H.G.: The spin-spin correlation functions and susceptibility amplitudes for the two-dimensional Ising model: triangular lattice. Phys. Lett. A 57, 1–4 (1976) ADSCrossRefGoogle Scholar
  47. 47.
    Matveev, V., Shrock, R.: Complex-temperature singularities in the d=2 Ising model: triangular and honeycomb lattices. J. Phys. A, Math. Gen. 29, 803–823 (1996). arXiv:hep-lat/9411023 and arXiv:hep-lat/9412076 MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Y. Chan
    • 1
  • A. J. Guttmann
    • 1
  • B. G. Nickel
    • 2
  • J. H. H. Perk
    • 3
    • 4
  1. 1.Department of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia
  2. 2.Department of PhysicsUniversity of GuelphGuelphCanada
  3. 3.Department of PhysicsOklahoma State UniversityStillwaterUSA
  4. 4.Department of Theoretical Physics (RSPE) and Centre for Mathematics and its Applications (CMA)Australian National UniversityCanberraAustralia

Personalised recommendations