Journal of Statistical Physics

, Volume 143, Issue 5, pp 921–942 | Cite as

Comparing the Efficiencies of Stochastic Isothermal Molecular Dynamics Methods

Article

Abstract

Molecular dynamics typically incorporates a stochastic-dynamical device, a “thermostat,” in order to drive the system to the Gibbs (canonical) distribution at a prescribed temperature. When molecular dynamics is used to compute time-dependent properties, such as autocorrelation functions or diffusion constants, at a given temperature, there is a conflict between the need for the thermostat to perturb the time evolution of the system as little as possible and the need to establish equilibrium rapidly. In this article we define a quantity called the “efficiency” of a thermostat which relates the perturbation introduced by the thermostat to the rate of convergence of average kinetic energy to its equilibrium value. We show how to estimate this quantity analytically, carrying out the analysis for several thermostats, including the Nosé-Hoover-Langevin thermostat due to Samoletov et al. (J. Stat. Phys. 128:1321–1336, 2007) and a generalization of the “stochastic velocity rescaling” method suggested by Bussi et al. (J. Chem. Phys. 126:014101, 2007). We find efficiency improvements (proportional to the number of degrees of freedom) for the new schemes compared to Langevin Dynamics. Numerical experiments are presented which precisely confirm our theoretical estimates.

Keywords

Molecular dynamics Stochastic thermostats Thermodynamic averages Nosé-Hoover Langevin dynamics Stochastic velocity rescaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bussi, G., Parrinello, M.: Stochastic thermostats: comparison of local and global schemes. Comput. Phys. Commun. 179, 26–29 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    Cancés, E., Legoll, F., Stoltz, G.: Theoretical and numerical comparison of some sampling methods for molecular dynamics. Modél. Math. Anal. Numér. 41(2), 351–389 (2007) MATHCrossRefGoogle Scholar
  4. 4.
    Chae, K., Elvati, P., Violi, A.: Effect of molecular configuration on binary diffusion coefficients of linear alkanes. J. Phys. Chem. B 115(3), 500–506 (2011) CrossRefGoogle Scholar
  5. 5.
    Cottrell, D., Tupper, P.: Energy drift in molecular dynamics simulations. BIT Numer. Math. 47, 507–523 (2007) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Davidchack, R.L.: Discretization errors in molecular dynamics simulations with deterministic and stochastic thermostats. J. Comput. Phys. 229(24), 9323–9346 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Ford, G.W., Kac, M.: On the quantum Langevin equation. J. Stat. Phys. 46(5–6), 803–810 (1987) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Garrido, P., Gallavotti, G.: Boundary dissipation in a driven hard disk system. J. Stat. Phys. 126, 1201–1207 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Hoover, W.: Canonical dynamics: equilibrium phase space distributions. Phys. Rev. A 31, 1695–1697 (1985) ADSCrossRefGoogle Scholar
  10. 10.
    Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119(1), 147–171 (1967) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1985) Google Scholar
  12. 12.
    Hünenberger, P.: Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci. 173, 105–149. (2005) Google Scholar
  13. 13.
    Langevin, P.: On the theory of Brownian motion (Sur la thórie du mouvement Brownien). C. R. Acad. Sci. (Paris) 146, 530–533 (1908) MATHGoogle Scholar
  14. 14.
    Legoll, F., Luskin, M., Moeckel, R.: Non-ergodicity of the Nose-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184, 449–463 (2007) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Legoll, F., Luskin, M., Moeckel, R.: Non-ergodicity of Nosé-Hoover dynamics. Nonlinearity 22, 1673–1694 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Leimkuhler, B., Noorizadeh, N., Theil, F.: A gentle stochastic thermostat for molecular dynamics. J. Stat. Phys. 135(2), 261–277 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101(2), 185–232 (2002) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Nosé, S.: A unified formulation of the constant temperature molecular dynamics method. J. Chem. Phys. 81, 511–519 (1984) ADSCrossRefGoogle Scholar
  19. 19.
    Oksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications, 4th edn. Springer, Berlin (1995) Google Scholar
  20. 20.
    Samoletov, A., Chaplain, M.A.J., Dettmann, C.P.: Thermostats for “slow” configurational modes. J. Stat. Phys. 128, 1321–1336 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Sun, J., Zhanga, L.: Temperature control algorithms in dual control volume grand canonical molecular dynamics simulations of hydrogen diffusion in palladium. J. Chem. Phys. 127, 164721 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    Williams, G.: Time-correlation functions and molecular motion. Chem. Soc. Rev. 7(89), 89–131 (1978) CrossRefGoogle Scholar
  23. 23.
    Yamashita, H., Endo, S., Wako, H., Kidera, A.: Sampling efficiency of molecular dynamics and Monte Carlo method in protein simulation. Chem. Phys. Lett. 342(3–4), 382–386 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ben Leimkuhler
    • 1
  • Emad Noorizadeh
    • 1
  • Oliver Penrose
    • 2
  1. 1.The Maxwell Institute and School of MathematicsUniversity of EdinburghEdinburghUK
  2. 2.The Maxwell Institute and Department of MathematicsHeriot-Watt UniversityEdinburghUK

Personalised recommendations