Journal of Statistical Physics

, Volume 143, Issue 4, pp 685–714

# A Macroscopic Model for a System of Swarming Agents Using Curvature Control

• Pierre Degond
• Sébastien Motsch
Article

## Abstract

In this paper, we study the macroscopic limit of a new model of collective displacement. The model, called PTWA, is a combination of the Vicsek alignment model (Vicsek et al. in Phys. Rev. Lett. 75(6):1226–1229, 1995) and the Persistent Turning Walker (PTW) model of motion by curvature control (Degond and Motsch in J. Stat. Phys. 131(6):989–1021, 2008; Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTW model was designed to fit measured trajectories of individual fish (Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTWA model (Persistent Turning Walker with Alignment) describes the displacements of agents which modify their curvature in order to align with their neighbors. The derivation of its macroscopic limit uses the non-classical notion of generalized collisional invariant introduced in (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008). The macroscopic limit of the PTWA model involves two physical quantities, the density and the mean velocity of individuals. It is a system of hyperbolic type but is non-conservative due to a geometric constraint on the velocity. This system has the same form as the macroscopic limit of the Vicsek model (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008) (the ‘Vicsek hydrodynamics’) but for the expression of the model coefficients. The numerical computations show that the numerical values of the coefficients are very close. The ‘Vicsek Hydrodynamic model’ appears in this way as a more generic macroscopic model of swarming behavior as originally anticipated.

## Keywords

Individual based model Fish behavior Persistent Turning Walker model Vicsek model Orientation interaction Asymptotic analysis Hydrodynamic limit Collision invariants

## References

1. 1.
Bakry, D., Cattiaux, P., Guillin, A.: Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. (2007) Google Scholar
2. 2.
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232 (2008)
3. 3.
Bellomo, N.: Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach. Birkhäuser, Basel (2008)
4. 4.
Bertin, E., Droz, M., Grégoire, G.: Boltzmann and hydrodynamic description for self-propelled particles. Phys. Rev. E 74(2), 22101 (2006)
5. 5.
Bolley, F., Canizo, J.A., Carrillo, J.A.: Stochastic mean-field limit: non-Lipschitz forces & swarming. Arxiv preprint. arXiv:1009.5166 (2010)
6. 6.
Brézis, H.: Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1983)
7. 7.
Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001) Google Scholar
8. 8.
Canizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Preprint (2009) Google Scholar
9. 9.
Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42, 218–236 (2010)
10. 10.
Cattiaux, P., Chafaï, D., Motsch, S.: Asymptotic analysis and diffusion limit of the persistent turning walker model. Asymptot. Anal. 67(1), 17–31 (2010)
11. 11.
Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, Berlin (1988)
12. 12.
Chaté, H., Ginelli, F., Grégoire, G., Peruani, F., Raynaud, F.: Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B 64, 451–456 (2008)
13. 13.
Chuang, Y., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Physica D 232(1), 33–47 (2007)
14. 14.
Couzin, I.D., Franks, N.R.: Self-organized lane formation and optimized traffic flow in army ants. Proc. R. Soc. Lond. B, Biol. Sci. 270(1511), 139 (2003)
15. 15.
Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32(1) (2003) Google Scholar
16. 16.
Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)
17. 17.
Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852 (2007)
18. 18.
Czirók, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Physica A 281(1–4), 17–29 (2000)
19. 19.
Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Degond, P., Russo, G., Pareschi, L. (eds.) Modeling and Computational Methods for Kinetic Equations. Birkhäuser, Basel (2004)
20. 20.
Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18(1), 1193–1215 (2008)
21. 21.
Degond, P., Motsch, S.: Large scale dynamics of the persistent turning walker model of fish behavior. J. Stat. Phys. 131(6), 989–1021 (2008)
22. 22.
Degond, P., Navoret, L., Bon, R., Sanchez, D.: Congestion in a macroscopic model of self-driven particles modeling gregariousness. J. Stat. Phys., 1–41 (2009) Google Scholar
23. 23.
Filbet, F., Laurençot, P., Perthame, B.: Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50(2), 189–207 (2005)
24. 24.
Gautrais, J., Jost, C., Soria, M., Campo, A., Motsch, S., Fournier, R., Blanco, S., Theraulaz, G.: Analyzing fish movement as a persistent turning walker. J. Math. Biol. 58(3), 429–445 (2009)
25. 25.
Gautrais, J., Theraulaz, G.: In preparation Google Scholar
26. 26.
Gross, L.: Logarithmic Sobolev inequalities and contractivity properties of semigroups. In: Dirichlet Forms, pp. 54–88 (1993)
27. 27.
Ha, S.Y., Liu, J.G.: A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7(2), 297–325 (2009)
28. 28.
Ha, S.Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1(3), 415–435 (2008)
29. 29.
Hemelrijk, C.K., Hildenbrandt, H.: Self-organized shape and frontal density of fish schools. Ethology 114(3), 245–254 (2008)
30. 30.
Jeanson, R., Deneubourg, J.L., Grimal, A., Theraulaz, G.: Modulation of individual behavior and collective decision-making during aggregation site selection by the ant Messor barbarus. Behav. Ecol. Sociobiol. 55(4), 388–394 (2004)
31. 31.
Lions, J.L.: Équations différentielles opérationnelles et problèmes aux limites. Springer, Berlin (1961)
32. 32.
Meyn, S.P., Tweedie, R.L.: Stability of markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25(3), 518–548 (1993)
33. 33.
Motsch, S., Navoret, L.: Numerical simulations of a non-conservative hyperbolic system with geometric constraints describing swarming behavior. Preprint (2010) Google Scholar
34. 34.
Nagy, M., Daruka, I., Vicsek, T.: New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion. Physica A 373, 445–454 (2007)
35. 35.
Oksendal, B.: Stochastic Differential Equations: An Introduction With Applications. Springer, New York (1992) Google Scholar
36. 36.
Parrish, J.K., Viscido, S.V., Grunbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. Marine Biol. Lab. Woods Hole 202(3), 296–305 (2002)
37. 37.
Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)
38. 38.
Szabo, P., Nagy, M., Vicsek, T.: Turning with the others: novel transitions in an SPP model with coupling of accelerations. In: Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO’08, pp. 463–464 (2008)
39. 39.
Sznitman, A.S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX-1989. Lecture Notes in Math., vol. 1464, pp. 165–251 (1989) Google Scholar
40. 40.
Theraulaz, G., Bonabeau, E., Nicolis, S.C., Sole, R.V., Fourcassie, V., Blanco, S., Fournier, R., Joly, J.L., Fernandez, P., Grimal, A., et al.: Spatial patterns in ant colonies. Proc. Natl. Acad. Sci. 99(15), 9645 (2002)
41. 41.
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)
42. 42.
Viscido, S.V., Parrish, J.K., Grünbaum, D.: Factors influencing the structure and maintenance of fish schools. Ecol. Model. 206(1–2), 153–165 (2007)