Advertisement

A Branching Random Walk Seen from the Tip

  • Éric Brunet
  • Bernard Derrida
Article

Abstract

We show that all the time-dependent statistical properties of the rightmost points of a branching Brownian motion can be extracted from the traveling wave solutions of the Fisher-KPP equation. The distribution of all the distances between the rightmost points has a long time limit which can be understood as the delay of the Fisher-KPP traveling waves when the initial condition is modified. The limiting measure exhibits the surprising property of superposability: the statistical properties of the distances between the rightmost points of the union of two realizations of the branching Brownian motion shifted by arbitrary amounts are the same as those of a single realization. We discuss the extension of our results to more general branching random walks.

Keywords

Branching random walk Branching Brownian motion Extreme value statistics Traveling waves 

References

  1. 1.
    Aïdékon, E.: Convergence in law of the minimum of a branching random walk. arXiv:1101.1810 [math.PR] (2011)
  2. 2.
    Aizenman, M., Sims, R., Starr, S.L.: Mean-field spin glass models from the cavity-ROSt perspective. Contemp. Math. 437, 1–30 (2007) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arguin, L.P.: Spin glass computations and Ruelle’s probability cascades. J. Stat. Phys. 126, 951–976 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Arguin, L.P., Bovier, A., Kistler, N.: The genealogy of extremal particles of branching Brownian motion. arXiv:1008.4386 [math.PR] (2010)
  5. 5.
    Arguin, L.P., Bovier, A., Kistler, N.: Poissonian statistics in the extremal process of branching Brownian motion. arXiv:1010.2376 [math.PR] (2010)
  6. 6.
    Bachmann, M.: Limit theorems for the minimal position in a branching random walk with independent logconcave displacements. Adv. Appl. Probab. 32, 159–176 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bolthausen, E., Sznitman, A.S.: On Ruelle’s probability cascades and an abstract cavity method. Commun. Math. Phys. 197, 247–276 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Bouchaud, J.P., Mézard, M.: Universality classes for extreme-value statistics. J. Phys. A 30, 7997–8015 (1997) ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Bovier, A., Kurkova, I.: A tomography of the GREM: Beyond the REM conjecture. Commun. Math. Phys. 263, 535–552 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Bovier, A., Kurkova, I.: Local energy statistics in spin glasses. J. Stat. Phys. 126, 933–949 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Bramson, M.D.: Convergence of Solutions of the Kolmogorov Equation to Traveling Waves. Mem. Am. Math. Soc. vol. 44(285) (1983) Google Scholar
  12. 12.
    Brunet, É., Derrida, B.: Statistics at the tip of a branching random walk and the delay of traveling waves. Europhys. Lett. 87, 60010 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Burkhardt, T.W., Györgyi, G., Moloney, N.R., Racz, Z.: Extreme statistics for time series: distribution of the maximum relative to the initial value. Phys. Rev. E 76, 041119 (2007) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Chauvin, B., Rouault, A.: Supercritical branching Brownian motion and K-P-P Equation in the critical speed-area. Math. Nachr. 149, 41–59 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chauvin, B., Rouault, A.: Boltzmann-Gibbs weights in the branching random walk. IMA Vol. Math. Its Appl. 84, 41–50 (1997) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dean, D.S., Majumdar, S.N.: Extreme-value statistics of hierarchically correlated variables deviation from Gumbel statistics and anomalous persistence. Phys. Rev. E 64, 046121 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    Derrida, B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B 24, 2613–2626 (1981) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Derrida, B.: A generalization of the random energy model which includes correlations between energies. J. Phys. Lett. 46, L401–L407 (1985) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Derrida, B., Spohn, H.: Polymers on disordered trees, spin glasses and traveling waves. J. Stat. Phys. 51(5/6), 817–840 (1988) MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Ebert, U., van Saarloos, W.: Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D 146, 1–99 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937) CrossRefGoogle Scholar
  22. 22.
    Fyodorov, Y.V., Bouchaud, J.-P.: Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A 41(37), 372001–372012 (2008) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Golding, I., Kozlovsky, Y., Cohen, I., Ben-Jacob, E.: Studies of bacterial branching growth using reaction-diffusion models for colonial development. Physica A 260, 510–554 (1998) CrossRefGoogle Scholar
  24. 24.
    Györgyi, G., Moloney, N.R., Ozogany, K., Racz, Z.: Finite-size scaling in extreme statistics. Phys. Rev. Lett. 100, 210601 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    Hu, Y., Shi, Z.: Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2), 742–789 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Igloi, F., Monthus, C.: Strong disorder RG approach of random systems. Phys. Rep. 412, 277–431 (2005) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Kessler, D.A., Levine, H., Ridgway, D., Tsimring, L.: Evolution on a smooth landscape. J. Stat. Phys. 87(3/4), 519–544 (1997) ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Kolmogorov, A., Petrovsky, I., Piscounov, N.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Mosc. A 1(6), 1–25 (1937) Google Scholar
  29. 29.
    Lalley, S.P., Sellke, T.: A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15, 1052–1061 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Maillard, P.: A characterisation of superposable random measures. arXiv:1102.1888 [math.PR] (2011)
  31. 31.
    Majumdar, S.N., Dean, D.S., Krapivsky, P.L.: Understanding search trees via statistical physics. Pramana J. Phys. 64(6) (2005) Google Scholar
  32. 32.
    Majumdar, S.N., Krapivsky, P.L.: Extreme value statistics and traveling fronts: application to computer science. Phys. Rev. E 65, 036127 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    McKean, H.P.: Applications of Brownian motion to the equation of Kolmogorov-Petrovski-Piscounov. Commun. Pure Appl. Math. 28, 323–331 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.A.: Replica symmetry-breaking and the nature of the spin-glass phase. J. Phys. 45, 843–854 (1984) CrossRefGoogle Scholar
  35. 35.
    Monthus, C., Garel, T.: On the critical weight statistics of the random energy model and of the directed polymer on the Cayley tree. Phys. Rev. E 75(5), 051119 (2007) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Roberts, M.I.: Almost sure asymptotics for the random binary search tree. arXiv:1002.3896 [math.PR] (2010)
  37. 37.
    Ruelle, D.: A mathematical reformulation of Derrida’s REM and GREM. Commun. Math. Phys. 108, 225–239 (1987) MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Ruzmaikina, A., Aizenman, M.: Characterization of invariant measures at the leading edge for competing particle systems. Ann. Probab. 33, 82–113 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386(2–6), 29–222 (2003) ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Sabhapandit, S., Majumdar, S.N.: Density of near-extreme events. Phys. Rev. Lett. 98, 140201 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–175 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratoire de Physique Statistique, École Normale SupérieureUPMC, Université Paris Diderot, CNRSParisFrance

Personalised recommendations