Two Refreshing Views of Fluctuation Theorems Through Kinematics Elements and Exponential Martingale

  • Raphaël Chetrite
  • Shamik Gupta


In the context of Markov evolution, we present two original approaches to obtain Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochastic derivatives and by using a family of exponential martingales functionals. We show that GFDT are perturbative versions of relations verified by these exponential martingales. Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov processes, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the FR to a family of backward and forward exponential martingales.


Non-equilibrium Markov Process Fluctuation-Dissipation Theorems Fluctuation Relations Martingales 


  1. 1.
    Agarwal, G.S.: Fluctuation-dissipation theorems for systems in non-thermal equilibrium and applications. Z. Phys. 252, 25–38 (1972) ADSCrossRefGoogle Scholar
  2. 2.
    Applebaum, D.: Levy Process Stochastic Calculus. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar
  3. 3.
    Baiesi, M., Maes, C., Wynants, B.: Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 103, 010602 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    Baiesi, M., Maes, C., Wynants, B.: Nonequilibrium linear response for Markov dynamics, I: jump processes and overdamped diffusions. J. Stat. Phys. 137, 1094–1116 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Bass, R.: SDEs with jumps. Notes for Cornell Summer School. (2007)
  6. 6.
    Baule, A., Cohen, E.G.D.: Fluctuation properties of an effective nonlinear system subject to Poisson noise. Phys. Rev. E 79, 030103 (2009) ADSGoogle Scholar
  7. 7.
    Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic Press, San Diego (1968) zbMATHGoogle Scholar
  8. 8.
    Brissaud, A., Frisch, U.: Linear stochastic differential equation. J. Math. Phys. 15, 5 (1974) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34–40 (1951) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Chernyak, V., Chertkov, M., Jarzynski, C.: Path-integral analysis of fluctuation theorems for general Langevin processes. J. Stat. Mech. P08001 (2006) Google Scholar
  11. 11.
    Chetrite, R., Gawedzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Chetrite, R., Falkovich, G., Gawedzki, K.: Fluctuation relations in simple examples of nonequilibrium steady states. J. Stat. Mech. P08005 (2008) Google Scholar
  13. 13.
    Chetrite, R., Gawedzki, K.: Eulerian and Lagrangian pictures of nonequilibrium diffusions. J. Stat. Phys. 137, 5–6 (2009) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chetrite, R.: Fluctuation relations for diffusion that is thermally driven by a nonstationary bath. Phys. Rev E. 051107 (2009) Google Scholar
  15. 15.
    Chetrite, R.: Thesis of ENS-Lyon (2008). Manuscript available at
  16. 16.
    Chung, K.L., Walsh, J.B.: Markov Processes, Brownian Motion, and Time Symmetry, 2nd edn. Springer, Berlin (2005) zbMATHGoogle Scholar
  17. 17.
    Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall, London (2003) CrossRefGoogle Scholar
  18. 18.
    Crisanti, A., Ritort, J.: Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence. J. Phys. A, Math. Gen. 36, R181–R290 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Crooks, G.E.: Path ensembles averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000) ADSGoogle Scholar
  20. 20.
    Cugliandolo, L.F., Kurchan, J., Parisi, G.: Off equilibrium dynamics and aging in unfrustrated systems. J. Phys. 4, 1641–1656 (1994) Google Scholar
  21. 21.
    Czernik, T., Kula, J., Luczka, J., Hanggi, P.: Thermal ratchets driven by Poissonian white shot noise. Phys. Rev. E 55, 4057–4066 (1997) ADSCrossRefGoogle Scholar
  22. 22.
    Darses, S., Nourdin, I.: Dynamical properties and characterization of gradient drift diffusion. Electron. Commun. Probab. 12, 390–400 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Davis, M.H.A.: Piecewise-deterministic Markov process: a general class of non-diffusion stochastic models. J. R. Stat. Soc. B 46, 353–388 (1984) zbMATHGoogle Scholar
  24. 24.
    Dellacherie, C., Meyer, P.A.: Probabilités et potential. Chapitre V à VIII. In: Actualités Scientifiques et Industrielles, vol. 1385. Hermann, Paris (1980) Google Scholar
  25. 25.
    Dembo, A., Deuschel, J.D.: Markovian perturbation, response and fluctuation dissipation theorem. Ann. Inst. Henri Poincaré 46, 822–852 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Diaconis, P., Miclo, L.: On characterizations of Metropolis type algorithms in continuous time. ALEA Lat. Am. J. Probab. Math. Stat. 6, 199–238 (2009) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Diezemann, G.: Fluctuation-dissipation relations for Markov processes. Phys. Rev. E 72, 011104 (2005) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Doob, J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Springer, New York (1984) zbMATHCrossRefGoogle Scholar
  29. 29.
    Durrett, R.: Probability, Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010) zbMATHGoogle Scholar
  30. 30.
    Dynkin, E.B.: The initial and final behavior of trajectories of Markov processes. Russ. Math. Surv. 26, 165 (1971) zbMATHCrossRefGoogle Scholar
  31. 31.
    Dynkin, E.B.: On duality for Markov processes. In: Friddman, A., Pinsky, M. (eds.) Stochastic Analysis. Academic Press, San Diego (1978) Google Scholar
  32. 32.
    Evans, D.J., Searles, D.J.: Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645–1648 (1994) ADSCrossRefGoogle Scholar
  33. 33.
    Feller, W.: On the integro-differential equations of purely discontinuous Markov processes. Trans. Am. Math. Soc. 48, 488–515 (1940) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Follmer, H.: An entropy approach to the time reversal of diffusion process. In: Stochastic Differential Equation. Lecture Notes in Control and Information Sci., vol. 69, pp. 156–163. Springer, Berlin (1985) Google Scholar
  35. 35.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensemble in a stationary state. J. Stat. Phys. 80, 931–970 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Gallavotti, G.: Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis. Phys. Rev. Lett. 77, 4334–4337 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Ge, H., Jiang, D.Q.: Generalized Jarzynski’s equality of inhomogeneous multidimensional diffusion processes. J. Stat. Phys. 131, 675–689 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Gomez-Solano, J.R., Petrosyan, A., Ciliberto, S., Chetrite, R., Gawedzki, K.: Experimental verification of a modified fluctuation-dissipation relation for a micron-sized particle in a nonequilibrium steady state. Phys. Rev. Lett. 103, 040601 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    Gomez-Solano, J.R., Petrosyan, A., Ciliberto, S., Maes, C.: Non-equilibrium linear response of micron-sized systems. arXiv:1006.3196v1 (2010)
  40. 40.
    Hanggi, P.: Langevin description of Markovian integro-differential master equations. Z. Phys. B, Condens. Matter Quanta 36, 271–282 (1980) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Hanggi, P., Thomas, H.: Stochastic processes: time evolution, symmetries and linear response. Phys. Rep. 88, 207–319 (1982) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Harris, R.J., Schütz, G.M.: Fluctuation theorems for stochastic dynamics. J. Stat. Mech. P07020 (2007) Google Scholar
  43. 43.
    Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001) ADSCrossRefGoogle Scholar
  44. 44.
    Haussmann, U.G., Pardoux, E.: Time reversal of diffusions. Ann. Probab. 14, 1188–1205 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Ito, K., Watanabe, S.: Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier 15, 13–30 (1965) MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Jacob, N.: Pseudo-differential Operators and Markov Processes, vol. I. Imperial College Press, London (2001) zbMATHCrossRefGoogle Scholar
  47. 47.
    Jacob, N.: Pseudo-differential Operators and Markov Processes, vol. II. Imperial College Press, London (2002) zbMATHCrossRefGoogle Scholar
  48. 48.
    Jacob, N.: Pseudo-differential Operators and Markov Processes, vol. III. Imperial College Press, London (2005) zbMATHCrossRefGoogle Scholar
  49. 49.
    Jarzynski, C.: A nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997) ADSCrossRefGoogle Scholar
  50. 50.
    Jarzynski, C.: Equilibrium free energy differences from nonequilibrium measurements: a master equation approach. Phys. Rev. E 56, 5018 (1997) ADSGoogle Scholar
  51. 51.
    Jiang, D.Q., Qian, M., Qian, M.P.: Mathematical theory of nonequilibrium steady states: on the frontier of probability and dynamical systems. In: Lecture Notes in Mathematics, vol. 1833. Springer, Berlin (2004) Google Scholar
  52. 52.
    Joachain, C.: Quantum Collision Theory. North-Holland, Amsterdam (1975) Google Scholar
  53. 53.
    Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966) ADSCrossRefGoogle Scholar
  54. 54.
    Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Non-equilibrium Statistical Mechanics. Springer, Berlin (1991) Google Scholar
  55. 55.
    Klimontovich, Yu.K.: Ito, Statonovich and kinetic forms of stochastic equations. Physics A 163, 515–532 (1990) MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    Kunita, H.: Absolute continuity of Markov process and generators. Nagoya Math. J. 36, 1–26 (1969) MathSciNetzbMATHGoogle Scholar
  57. 57.
    Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A, Math. Gen. 31, 3719–3729 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    Kurchan, J.: Non-equilibrium work relations. J. Stat. Mech.: Theory Exp., P07005 (2007) Google Scholar
  59. 59.
    Lebowitz, J., Spohn, H.: A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999) MathSciNetzbMATHCrossRefADSGoogle Scholar
  60. 60.
    Lippiello, E., Corberi, F., Zannetti, M.: Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function. Phys. Rev. E 71, 036104 (2005) MathSciNetADSGoogle Scholar
  61. 61.
    Lippiello, E., Corberi, F., Sarracinno, A., Zannetti, M.: Non-linear response and fluctuation dissipation relations. Phys. Rev. E 78, 041120 (2008) ADSGoogle Scholar
  62. 62.
    Liu, F., Ou-Yang, Z.C.: Generalized integral fluctuation theorem for diffusion processes. Phys. Rev. E 79, 060107 (2009) ADSGoogle Scholar
  63. 63.
    Liu, F., Luo, Y.P., Huang, M.C., Ou-Yang, Z.C.: A generalized integral fluctuation theorem for general jump processes. J. Phys. A, Math. Theor. 42, 332003 (2009) MathSciNetCrossRefGoogle Scholar
  64. 64.
    Liu, F., Ou-Yang, Z.C.: Linear response theory and transient fluctuation-theorems for diffusion processes: a backward point of view. arXiv:0912.1917v1 (2009)
  65. 65.
    Luczka, J., Czernik, T., Hanggi, P.: Symmetric white noise can induce directed current in ratchets. Phys. Rev. E 56, 3968–3975 (1997) ADSGoogle Scholar
  66. 66.
    Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999) MathSciNetzbMATHCrossRefADSGoogle Scholar
  67. 67.
    Maes, C., Wynants, B.: On a response formula and its interpretation. Markov Process. Relat. Fields 16, 45–58 (2010) MathSciNetzbMATHGoogle Scholar
  68. 68.
    Marini Bettolo Marconi, U., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuation-dissipation: response theory in statistical physics. Phys. Rep. 461, 111–195 (2008) ADSCrossRefGoogle Scholar
  69. 69.
    Mayer, P., Leonard, S., Berthier, L., Garrahan, J.P., Sollich, P.: Activated aging dynamics and negative fluctuation-dissipation ratios. Phys. Rev. Lett. 96, 030602 (2006) ADSCrossRefGoogle Scholar
  70. 70.
    Merton, R.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976) zbMATHCrossRefGoogle Scholar
  71. 71.
    Nelson, E.: Dynamical Theories of Brownian Motion, 2nd edn. Princeton University Press, Princeton (2001) Google Scholar
  72. 72.
    Nelson, E.: Quantum Fluctuations, Princeton Series in Physics. Princeton University Press, Princeton (1985) Google Scholar
  73. 73.
    Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931) ADSzbMATHCrossRefGoogle Scholar
  74. 74.
    Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931) ADSzbMATHCrossRefGoogle Scholar
  75. 75.
    Oono, Y., Paniconi, M.: Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29–44 (1998) MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    Palmowski, Z., Rolski, T.: A technique for exponential change of measure for Markov processes. Bernoulli 8(6), 767–785 (2002) MathSciNetzbMATHGoogle Scholar
  77. 77.
    Porporato, A., D’Odorico, P.: Phase transitions driven by state-dependent Poisson noise. Phys. Rev. Lett. 92, 110601 (2004) ADSCrossRefGoogle Scholar
  78. 78.
    Prost, J., Joanny, J.F., Parrondo, J.M.R.: Generalized fluctuation-dissipation theorem for steady state systems. Phys. Rev. Lett. 103, 090601 (2009) ADSCrossRefGoogle Scholar
  79. 79.
    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999) zbMATHGoogle Scholar
  80. 80.
    Risken, H.: The Fokker Planck Equation, 2nd edn. Springer, Berlin-Heidelberg (1989) zbMATHCrossRefGoogle Scholar
  81. 81.
    Sancho, J.M., San Miguel, M., Pesquera, L., Rodriguez, M.A.: Positivity requirements on fluctuating parameters. Physica A 142, 532–547 (1987) ADSCrossRefGoogle Scholar
  82. 82.
    Seifert, U.: Stochastic thermodynamics: Principles and perspectives. Eur. Phys. J. B 64, 423–432 (2008) ADSzbMATHCrossRefGoogle Scholar
  83. 83.
    Seifert, U., Speck, T.: Fluctuation-dissipation theorem in nonequilibrium steady states. Europhys. Lett. 89, 10007 (2010) ADSCrossRefGoogle Scholar
  84. 84.
    Sekimoto, K.: Stochastic energetics. In: Lecture Notes in Physics, vol. 799. Springer, Berlin (2010) Google Scholar
  85. 85.
    Speck, T., Seifert, U.: Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state. Europhys. Lett. 74, 391–396 (2006) ADSCrossRefGoogle Scholar
  86. 86.
    Speck, T.: Driven soft matter: entropy production and the fluctuation-dissipation theorem. arXiv:1004.1621 (2010)
  87. 87.
    Stroock, D., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979) zbMATHGoogle Scholar
  88. 88.
    Stroock, D.: Diffusion processes associated with Lévy generators. Probab. Theory Relat. Fields 32, 209–244 (1975) MathSciNetzbMATHGoogle Scholar
  89. 89.
    Touchette, H., Cohen, E.G.D.: Fluctuation relation for a Levy particle. Phys. Rev. E 76, 020101 (2007) ADSCrossRefGoogle Scholar
  90. 90.
    Van Kampen, N.G.: Processes with delta-correlated cumulants. Physica A 102, 489–495 (1980) MathSciNetADSCrossRefGoogle Scholar
  91. 91.
    Zimmer, M.F.: Fluctuations in nonequilibrium systems and broken supersymmetry. J. Stat. Phys. 73, 751–764 (1993) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Laboratoire J. A. Dieudonné, UMR CNRS 6621Universitée de Nice Sophia-AntipolisNice Cedex 02France
  3. 3.Laboratoire de Physique de l’École Normale Supérieure de LyonUniversité de Lyon, CNRSLyon cédex 07France

Personalised recommendations