Journal of Statistical Physics

, Volume 143, Issue 2, pp 326–345 | Cite as

A Generalized Plasma and Interpolation Between Classical Random Matrix Ensembles

  • Peter J. Forrester
  • Christopher D. SinclairEmail author


The eigenvalue probability density functions of the classical random matrix ensembles have a well known analogy with the one component log-gas at the special couplings β=1,2 and 4. It has been known for some time that there is an exactly solvable two-component log-potential plasma which interpolates between the β=1 and 4 circular ensemble, and an exactly solvable two-component generalized plasma which interpolates between β=2 and 4 circular ensemble. We extend known exact results relating to the latter—for the free energy and one and two-point correlations—by giving the general (k 1+k 2)-point correlation function in a Pfaffian form. Crucial to our working is an identity which expresses the Vandermonde determinant in terms of a Pfaffian. The exact evaluation of the general correlation is used to exhibit a perfect screening sum rule.


Random matrix Generalized plasma Log-gas Pfaffian Two-point correlation Anomalous quantum Hall effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arikawa, M., Yamamoto, T., Saiga, Y., Kuramoto, Y.: Spin dynamics in the supersymmetric tJ model with inverse-square interaction. J. Phys. Soc. Jpn. 73, 808–811 (2004) CrossRefADSGoogle Scholar
  2. 2.
    Borodin, A., Sinclair, C.D.: The Ginibre ensemble of real random matrices and its scaling limit. Commun. Math. Phys. 291, 177–224 (2009) CrossRefzbMATHADSMathSciNetGoogle Scholar
  3. 3.
    Dyson, F.J.: Statistical theory of energy levels of complex systems I. J. Math. Phys. 3, 140–156 (1962) CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Dyson, F.J.: Correlations between the eigenvalues of a random matrix. Commun. Math. Phys. 19, 235–250 (1970) CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    Forrester, P.J.: An exactly solvable two-component classical Coulomb system. J. Aust. Math. Soc. Ser. B 26, 119–128 (1984) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010) zbMATHGoogle Scholar
  7. 7.
    Forrester, P.J., Jancovici, B.: Generalized plasmas and the anomalous quantum hall effect. J. Phys. Lett. 45, L583–L589 (1984) CrossRefGoogle Scholar
  8. 8.
    Forrester, P.J., Mays, A.: Pfaffian point process for the Gaussian real generalised eigenvalue problem, arXiv:0910.2531
  9. 9.
    Halperin, B.I.: Theory of the quantized Hall conductance. Helv. Phys. Acta 56, 75–102 (1983) Google Scholar
  10. 10.
    Ishikawa, M., Okanda, S., Tagawa, H., Zeng, J.: Generalizations of Cauchy’s determinant and Schur’s Pfaffian. Adv. Appl. Math. 36, 251–287 (2006) CrossRefzbMATHGoogle Scholar
  11. 11.
    Krivnov, V.Y., Ovchinnikov, A.A.: An exactly solvable one-dimensional problem with several particle species. Theor. Math. Phys. 50, 100–103 (1982) CrossRefGoogle Scholar
  12. 12.
    Kuramoto, Y., Kato, Y.: Dynamics of One-Dimensional Quantum Systems: Inverse Square Interaction Models. Cambridge University Press, Cambridge (2009) CrossRefzbMATHGoogle Scholar
  13. 13.
    Mays, A.: PhD thesis, University of Melbourne, in preparation Google Scholar
  14. 14.
    Mehta, M.L.: A note on correlations between eigenvalues of random matrices. Commun. Math. Phys. 20, 245–250 (1971) CrossRefzbMATHADSMathSciNetGoogle Scholar
  15. 15.
    Mehta, M.L., Dyson, F.J.: Statistical theory of the energy levels of complex systems. V. J. Math. Phys. 4, 713–719 (1963) CrossRefzbMATHADSMathSciNetGoogle Scholar
  16. 16.
    Rider, B., Sinclair, C.D., Xu, Y.: A solvable mixed charge ensemble on the line: global results. arXiv:1007.2246 (2010)
  17. 17.
    Sinclair, C.D.: Ensemble averages when β is a square integer. arXiv:1008.4362 (2010)
  18. 18.
    Sutherland, B.: Quantum many-body problem in one dimension. J. Math. Phys. 12, 246–250 (1971) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsThe University of MelbourneMelbourneAustralia
  2. 2.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations