Advertisement

Journal of Statistical Physics

, Volume 143, Issue 2, pp 326–345 | Cite as

A Generalized Plasma and Interpolation Between Classical Random Matrix Ensembles

  • Peter J. Forrester
  • Christopher D. SinclairEmail author
Article

Abstract

The eigenvalue probability density functions of the classical random matrix ensembles have a well known analogy with the one component log-gas at the special couplings β=1,2 and 4. It has been known for some time that there is an exactly solvable two-component log-potential plasma which interpolates between the β=1 and 4 circular ensemble, and an exactly solvable two-component generalized plasma which interpolates between β=2 and 4 circular ensemble. We extend known exact results relating to the latter—for the free energy and one and two-point correlations—by giving the general (k 1+k 2)-point correlation function in a Pfaffian form. Crucial to our working is an identity which expresses the Vandermonde determinant in terms of a Pfaffian. The exact evaluation of the general correlation is used to exhibit a perfect screening sum rule.

Keywords

Random matrix Generalized plasma Log-gas Pfaffian Two-point correlation Anomalous quantum Hall effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arikawa, M., Yamamoto, T., Saiga, Y., Kuramoto, Y.: Spin dynamics in the supersymmetric tJ model with inverse-square interaction. J. Phys. Soc. Jpn. 73, 808–811 (2004) CrossRefADSGoogle Scholar
  2. 2.
    Borodin, A., Sinclair, C.D.: The Ginibre ensemble of real random matrices and its scaling limit. Commun. Math. Phys. 291, 177–224 (2009) CrossRefzbMATHADSMathSciNetGoogle Scholar
  3. 3.
    Dyson, F.J.: Statistical theory of energy levels of complex systems I. J. Math. Phys. 3, 140–156 (1962) CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Dyson, F.J.: Correlations between the eigenvalues of a random matrix. Commun. Math. Phys. 19, 235–250 (1970) CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    Forrester, P.J.: An exactly solvable two-component classical Coulomb system. J. Aust. Math. Soc. Ser. B 26, 119–128 (1984) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010) zbMATHGoogle Scholar
  7. 7.
    Forrester, P.J., Jancovici, B.: Generalized plasmas and the anomalous quantum hall effect. J. Phys. Lett. 45, L583–L589 (1984) CrossRefGoogle Scholar
  8. 8.
    Forrester, P.J., Mays, A.: Pfaffian point process for the Gaussian real generalised eigenvalue problem, arXiv:0910.2531
  9. 9.
    Halperin, B.I.: Theory of the quantized Hall conductance. Helv. Phys. Acta 56, 75–102 (1983) Google Scholar
  10. 10.
    Ishikawa, M., Okanda, S., Tagawa, H., Zeng, J.: Generalizations of Cauchy’s determinant and Schur’s Pfaffian. Adv. Appl. Math. 36, 251–287 (2006) CrossRefzbMATHGoogle Scholar
  11. 11.
    Krivnov, V.Y., Ovchinnikov, A.A.: An exactly solvable one-dimensional problem with several particle species. Theor. Math. Phys. 50, 100–103 (1982) CrossRefGoogle Scholar
  12. 12.
    Kuramoto, Y., Kato, Y.: Dynamics of One-Dimensional Quantum Systems: Inverse Square Interaction Models. Cambridge University Press, Cambridge (2009) CrossRefzbMATHGoogle Scholar
  13. 13.
    Mays, A.: PhD thesis, University of Melbourne, in preparation Google Scholar
  14. 14.
    Mehta, M.L.: A note on correlations between eigenvalues of random matrices. Commun. Math. Phys. 20, 245–250 (1971) CrossRefzbMATHADSMathSciNetGoogle Scholar
  15. 15.
    Mehta, M.L., Dyson, F.J.: Statistical theory of the energy levels of complex systems. V. J. Math. Phys. 4, 713–719 (1963) CrossRefzbMATHADSMathSciNetGoogle Scholar
  16. 16.
    Rider, B., Sinclair, C.D., Xu, Y.: A solvable mixed charge ensemble on the line: global results. arXiv:1007.2246 (2010)
  17. 17.
    Sinclair, C.D.: Ensemble averages when β is a square integer. arXiv:1008.4362 (2010)
  18. 18.
    Sutherland, B.: Quantum many-body problem in one dimension. J. Math. Phys. 12, 246–250 (1971) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsThe University of MelbourneMelbourneAustralia
  2. 2.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations