Journal of Statistical Physics

, Volume 143, Issue 1, pp 72–87 | Cite as

Spectral Problem of Block-rectangular Hierarchical Matrices

Article

Abstract

The spectral problem for matrices with a block-hierarchical structure is often considered in context of the theory of complex systems. In the present article, a new class of matrices with a block-rectangular non-symmetric hierarchical structure is introduced and the corresponding spectral problem is investigated. Using these results we study a model of error generation in information sequence where such block-rectangular hierarchical matrices appear in a natural way.

Keywords

Chaos Ultrametrics Evolution of sequences Block-hierarchical matrices Block-rectangular hierarchical matrices Matrix spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dyson, F.J.: Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91 (1969) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754 (1979) CrossRefADSGoogle Scholar
  3. 3.
    M’ezard, M., Parisi, G., Virasoro, M.A.: Spin-glass Theory and Beyond. Singapore, World Scientific (1987) Google Scholar
  4. 4.
    Franz, S., Jörg, T., Parisi, G.: Overlap interfaces in hierarchical spin-glass models. J. Stat. Mech., P02002 (2009) Google Scholar
  5. 5.
    Fyodorov, Y.V., Ossipov, A., Rodriguez, A.: The Anderson localisation transition and eigenfunction multifractality in an ensemble of ultrametric random matrices. J. Stat. Mech., L12001 (2009) Google Scholar
  6. 6.
    Avetisov, V.A., Chertovich, A.V., Nechaev, S.K., Vasilyev, O.A.: On scale-free and poly-scale behaviours of random hierarchical networks. J. Stat. Mech., P07008 (2009) Google Scholar
  7. 7.
    Castellana, M., Decelle, A., Franz, S., Mézard, M., Parisi, G.: Hierarchical random energy model of a spin glass. Phys. Rev. Lett. 10, 127206 (2010) CrossRefADSGoogle Scholar
  8. 8.
    Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792 (1975) CrossRefADSGoogle Scholar
  9. 9.
    Rammal, R., Toulouse, G., Virasoro, M.A.: Ultrametricity for physicists. Rev. Mod. Phys. 58, 765 (1986) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Bar-Yam, Y.: Dynamics of Complex System. Westview Press, Boulder (1997) Google Scholar
  11. 11.
    Parisi, G.: Complex system: a physicist’s viewpoint. Physica A 263, 557 (1999) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Ogielski, A.T., Stein, D.L.: Dynamics on ultrametric spaces. Phys. Rev. Lett. 55, 1634 (1985) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Temesvari, T., DeDominicis, C., Kondor, I.: Block diagonalising ultrametric matrices. J. Phys. A, Math. Gen. 27, 7569 (1994) CrossRefMATHADSGoogle Scholar
  14. 14.
    Carlucci, D.M., De Dominicis, C.: On the replica Fourier transform. C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Astron. 325, 527 (1997) MATHGoogle Scholar
  15. 15.
    De Dominicis, C., Giardina, I.: Random Fields and Spin Glasses: A Field Theory Approach. Cambridge University Press, Cambridge (2006) CrossRefMATHGoogle Scholar
  16. 16.
    Avetisov, V.A., Bikulov, A.Kh., Kozyrev, S.V.: Application of p-adic analysis to models of breaking of replica symmetry. J. Phys. A, Math. Gen. 32, 8785 (1999) CrossRefMATHADSMathSciNetGoogle Scholar
  17. 17.
    Parisi, G., Sourlas, N.: p-Adic numbers and replica symmetry breaking. Eur. Phys. J. B 14, 535 (2000) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Vladimirov, V.S., Volovich, I.V., Zelenov, Y.I., p-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1994) Google Scholar
  19. 19.
    Khrennikov, A.Yu., Kozyrev, S.V.: Replica symmetry breaking related to a general ultrametric space I: Replica matrices and functionals. Physica A 359, 222 (2006) CrossRefADSGoogle Scholar
  20. 20.
    Kozyrev, S.V., Osipov, A.V., Avetisov, V.A.: Nondegenerate ultrametric diffusion. J. Math. Phys. 46, 063302 (2005) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Pakoński, P., Życzkowski, K., Kuś, M.: Classical 1D maps, quantum graphs and ensembles of unitary matrices. J. Phys. A, Math. Gen. 34, 9303 (2001) CrossRefMATHADSGoogle Scholar
  22. 22.
    Gutkin, B.: Entropic bounds on semiclassical measures for quantised one-dimensional maps. Commun. Math. Phys. 294, 303 (2010) CrossRefMATHADSMathSciNetGoogle Scholar
  23. 23.
    Becker, O.M., Karplus, M.: The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys. 106, 1495 (1997) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Fakultät für PhysikUniversität Duisburg-EssenDuisburgGermany

Personalised recommendations