Journal of Statistical Physics

, Volume 142, Issue 4, pp 879–897 | Cite as

Resistance Scaling and the Number of Spanning Trees in Self-Similar Lattices

  • Elmar TeuflEmail author
  • Stephan Wagner


We consider the problem of enumerating spanning trees in self-similar lattices, motivated by recent work of Chang, Chen and Yang, who determined explicit formulae in the case of Sierpiński graphs and some of their generalizations. The aim of this note is to show that their results hold in more generality and that there is a strong relation between this enumeration problem and resistance scaling on self-similar lattices.


Self-similar lattices Electrical networks Resistance scaling Spanning trees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, S., Orbach, R.: Density of states on fractals: fractons. J. Phys. Lett. 43, L625–L631 (1982) CrossRefGoogle Scholar
  2. 2.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, New York (2008). doi: 10.1007/978-1-84628-970-5 zbMATHCrossRefGoogle Scholar
  3. 3.
    Burioni, R., Cassi, D., Donetti, L.: Lee-Yang zeros and the Ising model on the Sierpinski gasket. J. Phys. A 32(27), 5017–5027 (1999). doi: 10.1088/0305-4470/32/27/303 zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Chang, S.C., Chen, L.C.: Dimer coverings on the Sierpinski gasket with possible vacancies on the outmost vertices. J. Stat. Phys. 131(4), 631–650 (2008). arXiv:0711.0573v1 zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Chang, S.C., Chen, L.C.: Dimer-monomer model on the Sierpinski gasket. Physica A 387(7), 1551–1566 (2008). doi: 10.1016/j.physa.2007.10.057. arXiv:cond-mat/0702071v1 CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Chang, S.C., Chen, L.C., Yang, W.S.: Spanning trees on the Sierpinski gasket. J. Stat. Phys. 126(3), 649–667 (2007). arXiv:cond-mat/0609453v1 zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Chang, S.C., Shrock, R.: Some exact results for spanning trees on lattices. J. Phys. A 39(20), 5653–5658 (2006). doi: 10.1088/0305-4470/39/20/001 zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Cori, R., Le Borgne, Y.: The sand-pile model and Tutte polynomials. Adv. Appl. Math. 30(1–2), 44–52 (2003). doi: 10.1016/S0196-8858(02)00524-9. Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001) zbMATHCrossRefGoogle Scholar
  9. 9.
    D’Angeli, D., Donno, A., Smirnova-Nagnibeda, T.: Partition functions of the Ising model on some self-similar Schreier graphs (2010). Preprint, arXiv:1003.0611
  10. 10.
    Dhar, D.: Lattices of effectively nonintegral dimensionality. J. Math. Phys. 18(4), 577–585 (1977) CrossRefADSGoogle Scholar
  11. 11.
    Domany, E., Alexander, S., Bensimon, D., Kadanoff, L.P.: Solutions to the Schrödinger equation on some fractal lattices. Phys. Rev. B, Condens. Matter 28(6), 3110–3123 (1983) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972) CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Gefen, Y., Aharony, A., Shapir, Y., Mandelbrot, B.B.: Phase transitions on fractals. II. Sierpiński gaskets. J. Phys. A 17(2), 435–444 (1984). URL CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Gefen, Y., Mandelbrot, B.B., Aharony, A.: Critical phenomena on fractal lattices. Phys. Rev. Lett. 45(11), 855–858 (1980). doi: 10.1103/PhysRevLett.45.855 CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Grigorchuk, R., Šuniḱ, Z.: Asymptotic aspects of Schreier graphs and Hanoi Towers groups. C. R. Math. 342(8), 545–550 (2006) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Guyer, R.A.: Diffusion on the Sierpiński gaskets: a random walker on a fractally structured object. Phys. Rev. A 29(5), 2751–2755 (1984). doi: 10.1103/PhysRevA.29.2751 CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Hattori, K., Hattori, T., Kusuoka, S.: Self-avoiding paths on the pre-Sierpiński gasket. Probab. Theory Relat. Fields 84(1), 1–26 (1990). doi: 10.1007/BF01288555 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hinz, A.M.: The Tower of Hanoi. Enseign. Math. (2) 35(3–4), 289–321 (1989) zbMATHMathSciNetGoogle Scholar
  19. 19.
    Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001) zbMATHCrossRefGoogle Scholar
  20. 20.
    Kirchhoff, G.R.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72(4), 497–508 (1847). Gesammelte Abhandlungen, Leipzig, 1882 CrossRefADSGoogle Scholar
  21. 21.
    Lindstrøm, T.: Brownian motion on nested fractals. Mem. Am. Math. Soc. 83(420), iv+128 (1990) Google Scholar
  22. 22.
    Malozemov, L.A.: The difference Laplacian Δ on the modified Koch curve. Russ. J. Math. Phys. 1(4), 495–509 (1993) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Malozemov, L.A., Teplyaev, A.: Self-similarity, operators and dynamics. Math. Phys. Anal. Geom. 6(3), 201–218 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Metz, V.: Renormalization contracts on nested fractals. J. Reine Angew. Math. 480, 161–175 (1996). doi: 10.1515/crll.1996.480.161 zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Metz, V.: Shorted operators: an application in potential theory. Linear Algebra Appl. 264, 439–455 (1997). doi: 10.1016/S0024-3795(96)00303-5 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Metz, V.: “Laplacians” on finitely ramified, graph directed fractals. Math. Ann. 330(4), 809–828 (2004). doi: 10.1007/s00208-004-0571-9 zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Moon, J.W.: Counting labelled trees. In: Twelfth Biennial Seminar of the Canadian Mathematical Congress, vol. 1969, Vancouver. Canadian Mathematical Congress, Montreal (1970) Google Scholar
  28. 28.
    Rammal, R.: Random walk statistics on fractal structures. J. Stat. Phys. 36(5–6), 547–560 (1984) zbMATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Sabot, C.: Existence and uniqueness of diffusions on finitely ramified self-similar fractals. Ann. Sci. Ecole Norm. Super. 30(5), 605–673 (1997). doi: 10.1016/S0012-9593(97)89934-X zbMATHMathSciNetGoogle Scholar
  30. 30.
    Sabot, C.: Espaces de Dirichlet reliés par des points et application aux diffusions sur les fractals finiment ramifiés. Potential Anal. 11(2), 183–212 (1999). doi: 10.1023/A:1008796405430 zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Shrock, R., Wu, F.Y.: Spanning trees on graphs and lattices in d dimensions. J. Phys. A 33(21), 3881–3902 (2000) zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Temperley, H.N.V.: The enumeration of graphs on large periodic lattices. In: Combinatorics, Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972, pp. 285–294. Inst. Math. Appl., Southend (1972) Google Scholar
  33. 33.
    Temperley, H.N.V.: Enumeration of graphs on a large periodic lattice. In Combinatorics, Proc. British Combinatorial Conf., Univ. Coll. Wales, Aberystwyth, 1973. London Math. Soc. Lecture Note Ser., vol. 13, pp. 155–159. Cambridge University Press, London (1974) Google Scholar
  34. 34.
    Teufl, E., Wagner, S.: The number of spanning trees of finite Sierpinski graphs. In: Fourth Colloquium on Mathematics and Computer Science. DMTCS Proceedings, vol. AG, pp. 411–414 (2006) Google Scholar
  35. 35.
    Teufl, E., Wagner, S.: Enumeration problems for classes of self-similar graphs. J. Comb. Theory, Ser. A 114(7), 1254–1277 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Teufl, E., Wagner, S.: The number of spanning trees in self-similar graphs. Preprint (2008) Google Scholar
  37. 37.
    Teufl, E., Wagner, S.: Determinant identities for Laplace matrices. Linear Algebra Appl. 432(1), 441–457 (2010). doi: 10.1016/j.laa.2009.08.028 zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Tutte, W.T.: Lectures on matroids. J. Res. Nat. Bur. Standards Sect. B 69B, 1–47 (1965) MathSciNetGoogle Scholar
  39. 39.
    Wu, F.Y.: Number of spanning trees on a lattice. J. Phys. A 10(6), L113–L115 (1977) CrossRefADSGoogle Scholar
  40. 40.
    Wu, F.Y.: The Potts model. Rev. Mod. Phys. 54(1), 235–268 (1982). doi: 10.1103/RevModPhys.54.235 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität TübingenTübingenGermany
  2. 2.Department of Mathematical SciencesStellenbosch UniversityMatielandSouth Africa

Personalised recommendations