Journal of Statistical Physics

, Volume 142, Issue 4, pp 754–791 | Cite as

Generalized Green Functions and Current Correlations in the TASEP

  • A. M. Povolotsky
  • V. B. Priezzhev
  • G. M. Schütz


We study correlation functions of the totally asymmetric simple exclusion process (TASEP) in discrete time with backward sequential update. We prove a determinantal formula for the generalized Green function which describes transitions between positions of particles at different individual time moments. In particular, the generalized Green function defines a probability measure at staircase lines on the space-time plane. The marginals of this measure are the TASEP correlation functions in the space-time region not covered by the standard Green function approach. As an example, we calculate the current correlation function that is the joint probability distribution of times taken by selected particles to travel given distance. An asymptotic analysis shows that current fluctuations converge to the Airy2 process.


Totally Asymmetric Simple Exclusion Process Bethe Ansatz Determinantal Point Processes Kardar-Parisi-Zhang universality class 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13, 1380–1418 (2008) MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Borodin, A., Ferrari, P.L., Prähofer, M.: Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1 process. Int. Math. Res. Papers 2007 rpm002 (2007) Google Scholar
  3. 3.
    Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Borodin, A., Ferrari, P.L., Sasamoto, T.: Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP. Commun. Math. Phys. 283, 417 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Borodin, A., Ferrari, P.L., Sasamoto, T.: Transition between Airy1 and Airy2 processes and TASEP fluctuations. Commun. Pure Appl. Math. 61, 1603–1629 (2008) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Borodin, A., Olshanski, G.: Stochastic dynamics related to Plancherel measure on partitions. In: Kaimanovich, V., Lodkin, A. (eds.) Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, p. 922 (2006), MR2276098 Google Scholar
  7. 7.
    Borodin, A., Péché, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275–290 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Borodin, A., Rains, E.M.: EynardMehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121, 291 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Brankov, J.G., Priezzhev, V.B., Shelest, R.V.: Generalized determinant solution of the discrete-time totally asymmetric exclusion process and zero-range process. Phys. Rev. E 69, 066136 (2004) CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Corwin, I., Ferrari, P.L., Péché, S.: Universality of slow decorrelation in KPZ growth. arXiv:1001.5345 (2010)
  11. 11.
    Derrida, B.: An exactly soluble non-equilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301, 65 (1998) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Ferrari, P.L.: Slow decorrelations in Kardar-Parisi-Zhang growth. J. Stat. Mech. P07022 (2008) Google Scholar
  13. 13.
    Imamura, T., Sasamoto, T.: Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition. J. Stat. Phys. 128, 799 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437 (2000) MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003) MATHMathSciNetADSGoogle Scholar
  16. 16.
    Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889892 (1986) CrossRefGoogle Scholar
  17. 17.
    Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999) MATHGoogle Scholar
  18. 18.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. Oxford University Press, Oxford (1995) MATHGoogle Scholar
  19. 19.
    Nagao, T., Sasamoto, T.: Nucl. Phys. B 699, 487 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Priezzhev, V.B.: Exact nonstationary probabilities in the asymmetric exclusion process on a ring. Phys. Rev. Lett. 91, 050601 (2003) CrossRefADSGoogle Scholar
  21. 21.
    Priezzhev, V.B.: Non-stationary probabilities for the asymmetric exclusion process on a ring. Pramana-J.Phys. 64, 915–925 (2005) CrossRefADSGoogle Scholar
  22. 22.
    Povolotsky, A.M., Priezzhev, V.B.: Determinant solution for the totally asymmetric exclusion process with parallel update. J. Stat. Mech. P07002 (2006) Google Scholar
  23. 23.
    Povolotsky, A.M., Priezzhev, V.B.: Determinant solution for the totally asymmetric exclusion process with parallel update: II. Ring geometry. J. Stat. Mech. P08018 (2007) Google Scholar
  24. 24.
    Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The asymmetric exclusion process: Comparison of update procedures. J. Stat. Phys. 92(1–2), 151–194 (1998) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rákos, A., Schütz, G.M.: Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118, 511 (2005) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Rost, H.: Non-equilibrium behaviour of a many particle process: Density profile and local equilibria. Probab. Theory Relat. Fields 58, 41–53 (1981) MATHMathSciNetGoogle Scholar
  27. 27.
    Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549 (2005) CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Seppäläinen, T.: A scaling limit for queues in series. Ann. Appl. Probab. 7, 855 (1997) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Schütz, G.M.: Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88, 427 (1997) MATHCrossRefADSGoogle Scholar
  30. 30.
    Schütz, G.M.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press, San Diego (2001) Google Scholar
  31. 31.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. M. Povolotsky
    • 1
  • V. B. Priezzhev
    • 1
  • G. M. Schütz
    • 2
    • 3
  1. 1.Bogolubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Forschungszentrum Jülich GmbHInstitut für FestkörperforschungJülichGermany
  3. 3.Interdisziplinäres Zentrum für Komplexe SystemeUniversität BonnBonnGermany

Personalised recommendations