Journal of Statistical Physics

, Volume 142, Issue 3, pp 524–576 | Cite as

Layering and Wetting Transitions for an SOS Interface

  • Kenneth S. Alexander
  • François Dunlop
  • Salvador Miracle-Solé
Article
  • 71 Downloads

Abstract

We study the solid-on-solid interface model above a horizontal wall in three dimensional space, with an attractive interaction when the interface is in contact with the wall, at low temperatures. There is no bulk external field. The system presents a sequence of layering transitions, whose levels increase with the temperature, before reaching the wetting transition.

Keywords

SOS model Wetting Layering transitions Interface Entropic repulsion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, K.S., Dunlop, F., Miracle-Sole, S.: Layering in the Ising model. J. Stat. Phys. 141, 217–241 (2010) MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Basuev, A.G.: Ising model in half-space: a series of phase transitions in low magnetic fields. Theor. Math. Phys. 153, 1539–1574 (2007) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bissacot, R., Fernandez, R., Procacci, A.: On the convergence of cluster expansions for polymer gases. J. Stat. Phys. 139, 598–617 (2010) MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Binder, K., Landau, D.P.: Wetting versus layering near the roughening transition in the 3d Ising model. Phys. Rev. B 46, 4844 (1992) CrossRefADSGoogle Scholar
  5. 5.
    Cesi, F., Martinelli, F.: On the layering transition of an SOS interface interacting with a wall. I. Equilibrium results. J. Stat. Phys. 82, 823–913 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Chalker, J.T.: The pinning of an interface by a planar defect. J. Phys. A: Math. Gen. 15, L481–L485 (1982) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Dobrushin, R.L.: Estimates of semi-invariants for the Ising model at low temperatures. In: Topics in Statistics and Theoretical Physics. Amer. Math. Soc. Transl. (2), vol. 177, pp. 59–81 (1996) Google Scholar
  8. 8.
    Dinaburg, E.I., Mazel, A.E.: Layering transition in SOS model with external magnetic field. J. Stat. Phys. 74, 533–563 (1996) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Fröhlich, J., Pfister, C.E.: The wetting and layering transitions in the half-infinite Ising model. Europhys. Lett. 3, 845–852 (1987) CrossRefADSGoogle Scholar
  10. 10.
    Fröhlich, J., Pfister, C.E.: Semi-infinite Ising model: I. Thermodynamic functions and phase diagram in absence of magnetic field. Commun. Math. Phys. 109, 493–523 (1987) CrossRefADSGoogle Scholar
  11. 11.
    Fröhlich, J., Pfister, C.E.: Semi-infinite Ising model: II. The wetting and layering transitions. Commun. Math. Phys. 112, 51–74 (1987) MATHCrossRefADSGoogle Scholar
  12. 12.
    Gallavotti, G., Martin-Lof, A., Miracle-Sole, S.: Some problems connected with the description of coexisting phases at low temperatures in Ising models. In: Lenard, A. (ed.) Mathematical Methods in Statistical Mechanics, pp. 162–202. Springer, Berlin (1973) CrossRefGoogle Scholar
  13. 13.
    Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer systems. Commun. Math. Phys. 103, 491–498 (1986) MATHCrossRefADSGoogle Scholar
  14. 14.
    Lebowitz, J.L., Mazel, A.E.: A remark on the low temperature behavior of an SOS interface in half space. J. Stat. Phys. 84, 379–397 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Miracle-Sole, S.: On the convergence of cluster expansions. Physica A 279, 244–249 (2000) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Sinai, Ya.G.: Theory of Phase Transitions: Rigorous Results. Pergamon Press, Oxford (1982) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kenneth S. Alexander
    • 1
  • François Dunlop
    • 2
  • Salvador Miracle-Solé
    • 3
  1. 1.Department of Mathematics KAP 108University of Southern CaliforniaLos AngelesUSA
  2. 2.Laboratoire de Physique Théorique et Modelisation (CNRS, UMR 8089)Université de Cergy-PontoiseCergy-PontoiseFrance
  3. 3.Centre de Physique ThéoriqueCNRSMarseille cedex 9France

Personalised recommendations