Advertisement

Journal of Statistical Physics

, Volume 139, Issue 5, pp 820–858 | Cite as

A Simple Mean Field Model for Social Interactions: Dynamics, Fluctuations, Criticality

  • Francesca Collet
  • Paolo Dai Pra
  • Elena Sartori
Article

Abstract

We study the dynamics of a spin-flip model with a mean field interaction. The system is non reversible, spacially inhomogeneous, and it is designed to model social interactions. We obtain the limiting behavior of the empirical averages in the limit of infinitely many interacting individuals, and show that phase transition occurs. Then, after having obtained the dynamics of normal fluctuations around this limit, we analyze long time fluctuations for critical values of the parameters. We show that random inhomogeneities produce critical fluctuations at a shorter time scale compared to the homogeneous system.

Keywords

Critical dynamics Disordered model Fluctuations Interacting particle systems Large deviations Mean field interaction Non reversible Markov processes Phase transition Social interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amaro de Matos, J.M.G., Fernando Perez, J.: Fluctuations in the Curie-Weiss version of the random field Ising model. J. Statist. Phys. 62, 587–608 (1991) zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Barucci, E., Tolotti, M.: The dynamics of social interaction with agents’ heterogeneity. Working Paper Series n. 109, Dept. of Applied Mathematics, pp. 1–33. University of Venice (2009) Google Scholar
  3. 3.
    Blume, L.E.: How noise matters. Games Econ. Behav. 44, 251–271 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Blume, L.E., Durlauf, S.N.: Equilibrium concepts for social interaction models. Int. Game Theory Rev. 5, 193–209 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brock, W.A., Durlauf, S.N.: Discrete choice with social interactions. Rev. Econom. Stud. 68, 235–260 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Collet, F., Dai Pra, P.: The role of disorder in the dynamics of critical fluctuations of mean field models. (2010, in preparation) Google Scholar
  7. 7.
    Comets, F., Eisele, T.: Asymptotic dynamics, noncritical and critical fluctuations for a geometric long-range interacting model. Commun. Math. Phys. 118, 531–567 (1988) zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Cont, R., Löwe, M.: Social distance, heterogeneity and social interactions. Centre des Mathematiques Appliquees, Ecole Polytechnique, p. 505 (2003) Google Scholar
  9. 9.
    Dai Pra, P., den Hollander F.: McKean-Vlasov limit for interacting random processes in random media. Technical report, Department of Mathematics, University of Nijmegen (1995) Google Scholar
  10. 10.
    Dai Pra, P., Runggaldier, W.J., Sartori, E., Tolotti, M.: Large portfolio losses; A dynamic contagion model. Ann. Appl. Probab. 19, 347–394 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dai Pra, P., Tolotti, M.: Heterogeneous credit portfolios and the dynamics of the aggregate losses. Stoch. Process. Appl. 119, 2913–2944 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31, 29–85 (1983) CrossRefADSGoogle Scholar
  13. 13.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Jones and Bartlett, Boston (1993) zbMATHGoogle Scholar
  14. 14.
    Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986) zbMATHGoogle Scholar
  15. 15.
    Frey, R., Backhaus, J.: Pricing and hedging of portfolio credit derivatives with interacting default intensities. Int. J. Theor. Appl. Finance 11, 611–634 (2008) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Giesecke, K., Weber, S.: Cyclical correlations, credit contagion and portfolio losses. J. Bank. Financ. 28, 3009–3036 (2004) CrossRefGoogle Scholar
  17. 17.
    Giesecke, K., Weber, S.: Credit contagion and aggregate losses. J. Econ. Dyn. Control 30, 741–767 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean field equilibria in economics. M3AS 20(4), 1–22 (2010). doi: 10.1142/S0218202510004349 Google Scholar
  19. 19.
    Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999) zbMATHGoogle Scholar
  21. 21.
    Mantegna, R.N., Eugene Stanley, H.: Introduction to Econophysics. Cambridge University Press, Cambridge (1999) Google Scholar
  22. 22.
    Sartori, E.: Some aspects of spin systems with mean-field interaction. PhD thesis, Department of Pure and Applied Mathematics, University of Padova (2007) Google Scholar
  23. 23.
    Shiryaev, A.N.: Probability, 2nd edn. Springer, New York (1996) Google Scholar
  24. 24.
    Sood, V., Redner, S.: Voter models on heterogeneous graphs. Phys. Rev. Lett. 94(4), 178701 (2005) CrossRefADSGoogle Scholar
  25. 25.
    Stauffer, D., Moss de Oliveira, S., De Oliveira, P.M.C., Sá Martins, J.S.: Biology, Sociology, Geology by Computational Physicists. Elsevier, Amsterdam (2006) zbMATHGoogle Scholar
  26. 26.
    Suchecki, K., Eguíluz, V.M., San Miguel, M.: Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution. Phys. Rev. E 72(8), 036132 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Francesca Collet
    • 1
  • Paolo Dai Pra
    • 1
  • Elena Sartori
    • 1
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversity of PadovaPadovaItaly

Personalised recommendations