Journal of Statistical Physics

, Volume 142, Issue 6, pp 1287–1301 | Cite as

Statistical Mechanics of Horizontal Gene Transfer in Evolutionary Ecology

Article

Abstract

The biological world, especially its majority microbial component, is strongly interacting and may be dominated by collective effects. In this review, we provide a brief introduction for statistical physicists of the way in which living cells communicate genetically through transferred genes, as well as the ways in which they can reorganize their genomes in response to environmental pressure. We discuss how genome evolution can be thought of as related to the physical phenomenon of annealing, and describe the sense in which genomes can be said to exhibit an analogue of information entropy. As a direct application of these ideas, we analyze the variation with ocean depth of transposons in marine microbial genomes, predicting trends that are consistent with recent observations using metagenomic surveys.

Keywords

Evolution Horizontal gene transfer Mobile genetic elements Metagenomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adami, C.: Information theory in molecular biology. Phys. Life Rev. 1(1), 3–22 (2004) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Adami, C., Ofria, C., Collier, T.: Evolution of biological complexity. Proc. Natl. Acad. Sci. USA 97(9), 4463–4468 (2000) CrossRefADSGoogle Scholar
  3. 3.
    Aminov, R.I., Mackie, R.I.: Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 271(2), 147–161 (2007) CrossRefGoogle Scholar
  4. 4.
    Anderson, E.S.: Possible importance of transfer factors in bacterial evolution. Nature 209, 637–638 (1966) CrossRefADSGoogle Scholar
  5. 5.
    Anderson, N.G.: Evolutionary significance of virus infection. Nature 227, 1346–1347 (1970) CrossRefADSGoogle Scholar
  6. 6.
    Babic, A., Lindner, A.B., Vulic, M., Stewart, E.J., Radman, M.: Direct visualization of horizontal gene transfer. Science 319(5869), 1533–1536 (2008) CrossRefADSGoogle Scholar
  7. 7.
    Beiko, R.G., Harlow, T.J., Ragan, M.A.: Highways of gene sharing in prokaryotes. Proc. Natl. Acad. Sci. USA 102(40), 14332–14338 (2005) CrossRefADSGoogle Scholar
  8. 8.
    Beltrami, E., Carroll, T.: Modeling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32(8), 857–863 (1994) CrossRefMATHGoogle Scholar
  9. 9.
    Beman, J.M., Arrigo, K.R., Matson, P.A.: Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434(7030), 211–214 (2005) CrossRefADSGoogle Scholar
  10. 10.
    Bennett, P.M.: Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 153(S1), S347–S357 (2008) CrossRefGoogle Scholar
  11. 11.
    Bergthorsson, U., Andersson, D.I., Roth, J.R.: Ohno’s dilemma: Evolution of new genes under continuous selection. Proc. Natl. Acad. Sci. USA 104(43), 17004 (2007) CrossRefADSGoogle Scholar
  12. 12.
    Brochier, C., Forterre, P., Gribaldo, S.: An emerging phylogenetic core of archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol. Biol. 5(1), 36 (2005) CrossRefGoogle Scholar
  13. 13.
    Butler, T., Goldenfeld, N.: Robust ecological pattern formation induced by demographic noise. Phys. Rev. E 80(3), 30902 (2009) CrossRefADSGoogle Scholar
  14. 14.
    Chen, I., Dubnau, D.: DNA uptake during bacterial transformation. Nat. Rev., Microbiol. 2(3), 241–249 (2004) CrossRefGoogle Scholar
  15. 15.
    Chia, N., Goldenfeld, N.: The dynamics of gene duplication and transposons in microbial genomes following a sudden environmental change. arXiv:1005.3349 (2010)
  16. 16.
    Chia, N., Woese, C.R., Goldenfeld, N.: A collective mechanism for phase variation in biofilms. Proc. Natl. Acad. Sci. USA 105(38), 14597–14603 (2008) CrossRefADSGoogle Scholar
  17. 17.
    Chia, N., Cann, I., Olsen, G.J.: Evolution of dna replication protein complexes in eukaryotes and archaea. PLoS ONE 5(6), e10866 (2010) CrossRefADSGoogle Scholar
  18. 18.
    Cohen, O., Pupko, T.: Inference and characterization of horizontally transferred gene families using stochastic mapping. Mol. Biol. Evol. 27(3), 703 (2010) CrossRefGoogle Scholar
  19. 19.
    Davis, J.J., Olsen, G.J.: Modal codon usage: Assessing the typical codon usage of a genome. Mol. Biol. Evol. 27(4), 800 (2010) CrossRefGoogle Scholar
  20. 20.
    De La Torre, J.R., Christianson, L.M., Béjà, O., Suzuki, M.T., Karl, D.M., Heidelberg, J., DeLong, E.F.: Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc. Natl. Acad. Sci. USA 100(22), 12830 (2003) CrossRefADSGoogle Scholar
  21. 21.
    DeLong, E.: Microbial community genomics in the ocean. Nat. Rev., Microbiol. 3(6), 459–469 (2005) CrossRefGoogle Scholar
  22. 22.
    Denamur, E., Matic, I.: Evolution of mutation rates in bacteria. Mol. Microbiol. 60(4), 820–827 (2006) CrossRefGoogle Scholar
  23. 23.
    Dewar, R.C., Porte, A.: Statistical mechanics unifies different ecological patterns. J. Theor. Biol. 251(3), 389–403 (2008) CrossRefGoogle Scholar
  24. 24.
    Edwards, R., Rohwer, F.: Viral metagenomics. Nat. Rev., Microbiol. 3(6), 504–510 (2005) CrossRefGoogle Scholar
  25. 25.
    Eisen, J.A.: Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Dev. 10(6), 606–611 (2000) CrossRefGoogle Scholar
  26. 26.
    Elsas, J.D., Bailey, M.J.: The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42(2), 187–197 (2002) CrossRefGoogle Scholar
  27. 27.
    Farahi, K., Pusch, G.D., Overbeek, R., Whitman, W.B.: Detection of lateral gene transfer events in the prokaryotic trna synthetases by the ratios of evolutionary distances method. J. Mol. Evol. 58(5), 615–631 (2004) CrossRefGoogle Scholar
  28. 28.
    Frigaard, N.U., Martinez, A., Mincer, T.J., DeLong, E.F.: Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439(7078), 847–850 (2006) CrossRefADSGoogle Scholar
  29. 29.
    Frost, L.S., Leplae, R., Summers, A.O., Toussaint, A.: Mobile genetic elements: the agents of open source evolution. Nat. Rev., Microbiol. 3(9), 722–732 (2005) CrossRefGoogle Scholar
  30. 30.
    Garcia-Vallvé, S., Romeu, A., Palau, J.: Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 10(11), 1719 (2000) CrossRefGoogle Scholar
  31. 31.
    Gladyshev, E., Meselson, M., Arkhipova, I.: Massive horizontal gene transfer in bdelloid rotifers. Science 320(5880), 1210 (2008) CrossRefADSGoogle Scholar
  32. 32.
    Gogarten, J.P., Townsend, J.P.: Horizontal gene transfer genome innovation and evolution. Nat. Rev., Microbiol. 3(9), 679–687 (2005) CrossRefGoogle Scholar
  33. 33.
    Goldenfeld, N., Woese, C.: Biology’s next revolution. Nature 445(7126), 369 (2007) CrossRefADSGoogle Scholar
  34. 34.
    Goldenfeld, N., Woese, C.: Life is physics: evolution as a collective phenomenon far from equilibrium. Ann. Rev. Condens. Matter. Phys. 1 (2010, in press) Google Scholar
  35. 35.
    Hallegraeff, G.: A review of harmful algal blooms and their apparent global increase. Phycologia 32(2), 79–99 (1993) CrossRefGoogle Scholar
  36. 36.
    Handelsman, J.: Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68(4), 669–685 (2004) CrossRefGoogle Scholar
  37. 37.
    Hartwell, L., Hopfield, J., Leibler, S., Murray, A.: From molecular to modular cell biology. Nature 402, C47–C52 (1999) CrossRefGoogle Scholar
  38. 38.
    He, J., Sun, J., Deem, M.: Spontaneous emergence of modularity in a model of evolving individuals and in real networks. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 79(3), 031907 (2009) CrossRefADSGoogle Scholar
  39. 39.
    Hecht, I., Ben-Jacob, E., Levine, H.: Correlated phenotypic transitions to competence in bacterial colonies. Phys. Rev. E 76(4), 40901 (2007) CrossRefADSGoogle Scholar
  40. 40.
    Hendrix, R.W., Lawrence, J.G., Hatfull, G.F., Casjens, S.: The origins and ongoing evolution of viruses. Trends Microbiol. 8(11), 504–508 (2000) CrossRefGoogle Scholar
  41. 41.
    Holden, M.T.G., Feil, E.J., Lindsay, J.A., Peacock, S.J., Day, N.P.J., Enright, M.C., Foster, T.J., Moore, C.E., Hurst, L., Atkin, R., et al.: Complete genomes of two clinical staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 101(26), 9786–9792 (2004) CrossRefADSGoogle Scholar
  42. 42.
    Hotopp, J., Clark, M., Oliveira, D., Foster, J., Fischer, P., Torres, M., Giebel, J., Kumar, N., Ishmael, N., Wang, S., et al.: Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317(5845), 1753–1756 (2007) CrossRefADSGoogle Scholar
  43. 43.
    Hubbell, S.P.: The Unified Neutral Theory of Species Abundance and Diversity. Princeton University, Princeton (2001) Google Scholar
  44. 44.
    Huppert, A., Blasius, B., Stone, L.: A model of phytoplankton blooms. Am. Nat. 159(2), 156–171 (2002) CrossRefGoogle Scholar
  45. 45.
    Hutchinson, G.: The paradox of the plankton. Am. Nat. 95(882), 137–145 (1961) CrossRefGoogle Scholar
  46. 46.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000) CrossRefADSGoogle Scholar
  47. 47.
    Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. USA 102(39), 13773–13778 (2005) CrossRefADSGoogle Scholar
  48. 48.
    Kashtan, N., Parter, M., Dekel, E., Mayo, A., Alon, U.: Extinctions in heterogeneous environments and the evolution of modularity. Evolution 63(8), 1964–1975 (2009) CrossRefGoogle Scholar
  49. 49.
    Keeling, P.J., Palmer, J.D.: Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9(8), 605–618 (2008) CrossRefGoogle Scholar
  50. 50.
    Koike, S., Krapac, I., Oliver, H., Yannarell, A., Chee-Sanford, J., Aminov, R., Mackie, R.: Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl. Environ. Microbiol. 73(15), 4813–4823 (2007) CrossRefGoogle Scholar
  51. 51.
    Konstantinidis, K.T., Braff, J., Karl, D.M., DeLong, E.F.: Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl. Environ. Microbiol. 75(16), 5345–5355 (2009) CrossRefGoogle Scholar
  52. 52.
    Kreimer, A., Borenstein, E., Gophna, U., Ruppin, E.: The evolution of modularity in bacterial metabolic networks. Proc. Natl. Acad. Sci. USA 105(19), 6976–6981 (2008) CrossRefADSGoogle Scholar
  53. 53.
    Kunin, V., Goldovsky, L., Darzentas, N., Ouzounis, C.A.: The net of life: reconstructing the microbial phylogenetic network. Genome Res. 15(7), 954–959 (2005) CrossRefGoogle Scholar
  54. 54.
    Lindell, D., Sullivan, M.B., Johnson, Z.I., Tolonen, A.C., Rohwer, F., Chisholm, S.W.: Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl. Acad. Sci. USA 101(30), 11013–110139 (2004) CrossRefADSGoogle Scholar
  55. 55.
    Lorenz, M., Wackernagel, W.: Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Mol. Biol. Rev. 58(3), 563 (1994) Google Scholar
  56. 56.
    Lorenz, D.M., Jeng, A., Deem, M.W.: The emergence of modularity in biological systems. J. Life Rev. (2010, submitted) Google Scholar
  57. 57.
    Mahillon, J., Chandler, M.: Insertion sequences. Microbiol. Mol. Biol. Rev. 62(3), 725 (1998) Google Scholar
  58. 58.
    McKenzie, G.J., Harris, R.S., Lee, P.L., Rosenberg, S.M.: The sos response regulates adaptive mutation. Proc. Natl. Acad. Sci. USA 97(12), 6646 (2000) CrossRefADSGoogle Scholar
  59. 59.
    Médigue, C., Rouxel, T., Vigier, P., Hénaut, A., Danchin, A.: Evidence for horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. 222(4), 851–856 (1991) CrossRefGoogle Scholar
  60. 60.
    Menge, D.N.L., Weitz, J.S.: Dangerous nutrients: Evolution of phytoplankton resource uptake subject to virus attack. J. Theor. Biol. 257(1), 104–115 (2009) CrossRefGoogle Scholar
  61. 61.
    Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990) CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    Monier, A., Pagarete, A., de Vargas, C., Allen, M., Read, B., Claverie, J., Ogata, H.: Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res. 19(8), 1441 (2009) CrossRefGoogle Scholar
  63. 63.
    Nielsen, K.M., Townsend, J.P.: Monitoring and modeling horizontal gene transfer. Nat. Biotechnol. 22(9), 1110–1114 (2004) CrossRefGoogle Scholar
  64. 64.
    Pace, J., Gilbert, C., Clark, M., Feschotte, C.: Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc. Natl. Acad. Sci. USA 105(44), 17023 (2008) CrossRefADSGoogle Scholar
  65. 65.
    Pál, C., Papp, B., Lercher, M.: Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37(12), 1372–1375 (2005) CrossRefGoogle Scholar
  66. 66.
    Parter, M., Kashtan, N., Alon, U.: Environmental variability and modularity of bacterial metabolic networks. BMC Evol. Biol. 7, 169/1–8 (2007) CrossRefGoogle Scholar
  67. 67.
    Prangishvili, D., Forterre, P., Garrett, R.A.: Viruses of the archaea: a unifying view. Nat. Rev., Microbiol. 4(11), 837–848 (2006) CrossRefGoogle Scholar
  68. 68.
    Rodriguez-Brito, B., Li, L., Wegley, L., Furlan, M., Angly, F., Breitbart, M., Buchanan, J., Desnues, C., Dinsdale, E., Edwards, R., Felts, B., Haynes, M., Liu, H., Lipson, D., Mahaffy, J., Belen Martin-Cuadrado, A., Mira, A., Nulton, J., et al.: Viral and microbial community dynamics in four aquatic environments. ISME J. 4(6), 739–751 (2010) CrossRefGoogle Scholar
  69. 69.
    Rodriguez-Valera, F., Martin-Cuadrado, A., Rodriguez-Brito, B., Pasic, L., Thingstad, T., Rohwer, F., Mira, A.: Explaining microbial population genomics through phage predation. Nat. Rev., Microbiol. 7(11), 828–836 (2009) CrossRefGoogle Scholar
  70. 70.
    Salyers, A.A., Amabile-Cuevas, C.F.: Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41(11), 2321 (1997) Google Scholar
  71. 71.
    Scheffer, M., Rinaldi, S., Huisman, J., Weissing, F.: Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491(1), 9–18 (2003) CrossRefGoogle Scholar
  72. 72.
    Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V., Lancelot, C.: Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea Res. 53(1–2), 43–66 (2005) CrossRefADSGoogle Scholar
  73. 73.
    Simon, H.: The architecture of complexity. Proc. Am. Philos. Soc. 106(6), 467–482 (1962) Google Scholar
  74. 74.
    Snel, B., Bork, P., Huynen, M.A.: Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res. 12(1), 17–25 (2002) CrossRefGoogle Scholar
  75. 75.
    Sonea, S.: A bacterial way of life. Nature 331(6153), 216 (1988) CrossRefADSGoogle Scholar
  76. 76.
    Sørensen, S.J., Bailey, M., Hansen, L.H., Kroer, N., Wuertz, S.: Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev., Microbiol. 3(9), 700–710 (2005) CrossRefGoogle Scholar
  77. 77.
    Sullivan, M.B., Waterbury, J.B., Chisholm, S.W.: Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424(6952), 1047–1051 (2003) CrossRefADSGoogle Scholar
  78. 78.
    Sun, J., Deem, M.W.: Spontaneous emergence of modularity in a model of evolving individuals. Phys. Rev. Lett. 99(22), 228107 (2007) CrossRefADSGoogle Scholar
  79. 79.
    Suttle, C.A.: Viruses in the sea. Nature 437(7057), 356–361 (2005) CrossRefADSGoogle Scholar
  80. 80.
    Suttle, C.A.: Marine virusesmajor players in the global ecosystem. Nat. Rev., Microbiol. 5(10), 801–812 (2007) CrossRefGoogle Scholar
  81. 81.
    Syvanen, M.: Horizontal gene transfer: evidence and possible consequences. Annu. Rev. Genet. 28(1), 237–261 (1994) CrossRefGoogle Scholar
  82. 82.
    Thomas, C.M., Nielsen, K.M.: Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev., Microbiol. 3(9), 711–721 (2005) CrossRefGoogle Scholar
  83. 83.
    Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks. I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57(2), 247–276 (1995) MATHGoogle Scholar
  84. 84.
    Tsirigos, A., Rigoutsos, I.: A new computational method for the detection of horizontal gene transfer events. Nucleic Acids Res. 33(3), 922 (2005) CrossRefGoogle Scholar
  85. 85.
    Tyson, G., Chapman, J., Hugenholtz, P., Allen, E., Ram, R., Richardson, P., Solovyev, V., Rubin, E., Rokhsar, D., Banfield, J.: Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978), 37–43 (2004) CrossRefADSGoogle Scholar
  86. 86.
    Vetsigian, K., Goldenfeld, N.: Global divergence of microbial genome sequences mediated by propagating fronts. Proc. Natl. Acad. Sci. USA 102(20), 7332 (2005) CrossRefADSGoogle Scholar
  87. 87.
    Vetsigian, K., Woese, C., Goldenfeld, N.: Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA 103(28), 10696–10702 (2006) CrossRefADSGoogle Scholar
  88. 88.
    Wagner, G., Pavlicev, M., Cheverud, J.: The road to modularity. Nat. Rev. Genet. 8(12), 921–931 (2007) CrossRefGoogle Scholar
  89. 89.
    Waters, C., Bassler, B.: Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–46 (2005) CrossRefGoogle Scholar
  90. 90.
    Weinbauer, M.G.: Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28(2), 127–181 (2004) CrossRefGoogle Scholar
  91. 91.
    Weinbauer, M.G., Rassoulzadegan, F.: Are viruses driving microbial diversification and diversity? Environ. Microbiol. 6(1), 1–11 (2004) CrossRefGoogle Scholar
  92. 92.
    Wilmes, P., Simmons, S.L., Denef, V.J., Banfield, J.F.: The dynamic genetic repertoire of microbial communities. FEMS Microbiol. Rev. 33(1), 109–132 (2009) CrossRefGoogle Scholar
  93. 93.
    Woese, C.R.: On the evolution of cells. Proc. Natl. Acad. Sci. USA 99(13), 8742–8748 (2002) CrossRefADSGoogle Scholar
  94. 94.
    Woese, C.R., Fox, G.E.: The concept of cellular evolution. J. Mol. Evol. 10(1), 1–6 (1977) CrossRefGoogle Scholar
  95. 95.
    Woese, C.R., Fox, G.E.: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74(11), 5088 (1977) CrossRefADSGoogle Scholar
  96. 96.
    Woese, C.R., Olsen, G.J., Ibba, M., Soll, D.: Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64(1), 202 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Loomis Laboratory of Physics, Department of Physics and Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations